ETISS 0.8.0
Extendable Translating Instruction Set Simulator (version 0.8.0)
xmmintrin.h
Go to the documentation of this file.
1 /*===---- xmmintrin.h - Implementation of SSE intrinsics on PowerPC --------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 /* Implemented from the specification included in the Intel C++ Compiler
11  User Guide and Reference, version 9.0. */
12 
13 #ifndef NO_WARN_X86_INTRINSICS
14 /* This header file is to help porting code using Intel intrinsics
15  explicitly from x86_64 to powerpc64/powerpc64le.
16 
17  Since X86 SSE intrinsics mainly handles __m128 type, PowerPC
18  VMX/VSX ISA is a good match for vector float SIMD operations.
19  However scalar float operations in vector (XMM) registers require
20  the POWER8 VSX ISA (2.07) level. There are differences for data
21  format and placement of float scalars in the vector register, which
22  require extra steps to match SSE scalar float semantics on POWER.
23 
24  It should be noted that there's much difference between X86_64's
25  MXSCR and PowerISA's FPSCR/VSCR registers. It's recommended to use
26  portable <fenv.h> instead of access MXSCR directly.
27 
28  Most SSE scalar float intrinsic operations can be performed more
29  efficiently as C language float scalar operations or optimized to
30  use vector SIMD operations. We recommend this for new applications. */
31 #error "Please read comment above. Use -DNO_WARN_X86_INTRINSICS to disable this error."
32 #endif
33 
34 #ifndef _XMMINTRIN_H_INCLUDED
35 #define _XMMINTRIN_H_INCLUDED
36 
37 #if defined(__linux__) && defined(__ppc64__)
38 
39 /* Define four value permute mask */
40 #define _MM_SHUFFLE(w,x,y,z) (((w) << 6) | ((x) << 4) | ((y) << 2) | (z))
41 
42 #include <altivec.h>
43 
44 /* Avoid collisions between altivec.h and strict adherence to C++ and
45  C11 standards. This should eventually be done inside altivec.h itself,
46  but only after testing a full distro build. */
47 #if defined(__STRICT_ANSI__) && (defined(__cplusplus) || \
48  (defined(__STDC_VERSION__) && \
49  __STDC_VERSION__ >= 201112L))
50 #undef vector
51 #undef pixel
52 #undef bool
53 #endif
54 
55 /* We need type definitions from the MMX header file. */
56 #include <mmintrin.h>
57 
58 /* Get _mm_malloc () and _mm_free (). */
59 #if __STDC_HOSTED__
60 #include <mm_malloc.h>
61 #endif
62 
63 /* The Intel API is flexible enough that we must allow aliasing with other
64  vector types, and their scalar components. */
65 typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__));
66 
67 /* Unaligned version of the same type. */
68 typedef float __m128_u __attribute__ ((__vector_size__ (16), __may_alias__,
69  __aligned__ (1)));
70 
71 /* Internal data types for implementing the intrinsics. */
72 typedef float __v4sf __attribute__ ((__vector_size__ (16)));
73 
74 /* Create an undefined vector. */
75 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
76 _mm_undefined_ps (void)
77 {
78  __m128 __Y = __Y;
79  return __Y;
80 }
81 
82 /* Create a vector of zeros. */
83 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
84 _mm_setzero_ps (void)
85 {
86  return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f };
87 }
88 
89 /* Load four SPFP values from P. The address must be 16-byte aligned. */
90 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
91 _mm_load_ps (float const *__P)
92 {
93  return ((__m128)vec_ld(0, (__v4sf*)__P));
94 }
95 
96 /* Load four SPFP values from P. The address need not be 16-byte aligned. */
97 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
98 _mm_loadu_ps (float const *__P)
99 {
100  return (vec_vsx_ld(0, __P));
101 }
102 
103 /* Load four SPFP values in reverse order. The address must be aligned. */
104 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
105 _mm_loadr_ps (float const *__P)
106 {
107  __v4sf __tmp;
108  __m128 result;
109  static const __vector unsigned char permute_vector =
110  { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16,
111  0x17, 0x10, 0x11, 0x12, 0x13 };
112 
113  __tmp = vec_ld (0, (__v4sf *) __P);
114  result = (__m128) vec_perm (__tmp, __tmp, permute_vector);
115  return result;
116 }
117 
118 /* Create a vector with all four elements equal to F. */
119 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
120 _mm_set1_ps (float __F)
121 {
122  return __extension__ (__m128)(__v4sf){ __F, __F, __F, __F };
123 }
124 
125 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
126 _mm_set_ps1 (float __F)
127 {
128  return _mm_set1_ps (__F);
129 }
130 
131 /* Create the vector [Z Y X W]. */
132 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
133 _mm_set_ps (const float __Z, const float __Y, const float __X, const float __W)
134 {
135  return __extension__ (__m128)(__v4sf){ __W, __X, __Y, __Z };
136 }
137 
138 /* Create the vector [W X Y Z]. */
139 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
140 _mm_setr_ps (float __Z, float __Y, float __X, float __W)
141 {
142  return __extension__ (__m128)(__v4sf){ __Z, __Y, __X, __W };
143 }
144 
145 /* Store four SPFP values. The address must be 16-byte aligned. */
146 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
147 _mm_store_ps (float *__P, __m128 __A)
148 {
149  vec_st((__v4sf)__A, 0, (__v4sf*)__P);
150 }
151 
152 /* Store four SPFP values. The address need not be 16-byte aligned. */
153 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
154 _mm_storeu_ps (float *__P, __m128 __A)
155 {
156  *(__m128_u *)__P = __A;
157 }
158 
159 /* Store four SPFP values in reverse order. The address must be aligned. */
160 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
161 _mm_storer_ps (float *__P, __m128 __A)
162 {
163  __v4sf __tmp;
164  static const __vector unsigned char permute_vector =
165  { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16,
166  0x17, 0x10, 0x11, 0x12, 0x13 };
167 
168  __tmp = (__m128) vec_perm (__A, __A, permute_vector);
169 
170  _mm_store_ps (__P, __tmp);
171 }
172 
173 /* Store the lower SPFP value across four words. */
174 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
175 _mm_store1_ps (float *__P, __m128 __A)
176 {
177  __v4sf __va = vec_splat((__v4sf)__A, 0);
178  _mm_store_ps (__P, __va);
179 }
180 
181 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
182 _mm_store_ps1 (float *__P, __m128 __A)
183 {
184  _mm_store1_ps (__P, __A);
185 }
186 
187 /* Create a vector with element 0 as F and the rest zero. */
188 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
189 _mm_set_ss (float __F)
190 {
191  return __extension__ (__m128)(__v4sf){ __F, 0.0f, 0.0f, 0.0f };
192 }
193 
194 /* Sets the low SPFP value of A from the low value of B. */
195 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
196 _mm_move_ss (__m128 __A, __m128 __B)
197 {
198  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
199 
200  return (vec_sel ((__v4sf)__A, (__v4sf)__B, mask));
201 }
202 
203 /* Create a vector with element 0 as *P and the rest zero. */
204 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
205 _mm_load_ss (float const *__P)
206 {
207  return _mm_set_ss (*__P);
208 }
209 
210 /* Stores the lower SPFP value. */
211 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
212 _mm_store_ss (float *__P, __m128 __A)
213 {
214  *__P = ((__v4sf)__A)[0];
215 }
216 
217 /* Perform the respective operation on the lower SPFP (single-precision
218  floating-point) values of A and B; the upper three SPFP values are
219  passed through from A. */
220 
221 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
222 _mm_add_ss (__m128 __A, __m128 __B)
223 {
224 #ifdef _ARCH_PWR7
225  __m128 a, b, c;
226  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
227  /* PowerISA VSX does not allow partial (for just lower double)
228  results. So to insure we don't generate spurious exceptions
229  (from the upper double values) we splat the lower double
230  before we to the operation. */
231  a = vec_splat (__A, 0);
232  b = vec_splat (__B, 0);
233  c = a + b;
234  /* Then we merge the lower float result with the original upper
235  float elements from __A. */
236  return (vec_sel (__A, c, mask));
237 #else
238  __A[0] = __A[0] + __B[0];
239  return (__A);
240 #endif
241 }
242 
243 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
244 _mm_sub_ss (__m128 __A, __m128 __B)
245 {
246 #ifdef _ARCH_PWR7
247  __m128 a, b, c;
248  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
249  /* PowerISA VSX does not allow partial (for just lower double)
250  results. So to insure we don't generate spurious exceptions
251  (from the upper double values) we splat the lower double
252  before we to the operation. */
253  a = vec_splat (__A, 0);
254  b = vec_splat (__B, 0);
255  c = a - b;
256  /* Then we merge the lower float result with the original upper
257  float elements from __A. */
258  return (vec_sel (__A, c, mask));
259 #else
260  __A[0] = __A[0] - __B[0];
261  return (__A);
262 #endif
263 }
264 
265 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
266 _mm_mul_ss (__m128 __A, __m128 __B)
267 {
268 #ifdef _ARCH_PWR7
269  __m128 a, b, c;
270  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
271  /* PowerISA VSX does not allow partial (for just lower double)
272  results. So to insure we don't generate spurious exceptions
273  (from the upper double values) we splat the lower double
274  before we to the operation. */
275  a = vec_splat (__A, 0);
276  b = vec_splat (__B, 0);
277  c = a * b;
278  /* Then we merge the lower float result with the original upper
279  float elements from __A. */
280  return (vec_sel (__A, c, mask));
281 #else
282  __A[0] = __A[0] * __B[0];
283  return (__A);
284 #endif
285 }
286 
287 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
288 _mm_div_ss (__m128 __A, __m128 __B)
289 {
290 #ifdef _ARCH_PWR7
291  __m128 a, b, c;
292  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
293  /* PowerISA VSX does not allow partial (for just lower double)
294  results. So to insure we don't generate spurious exceptions
295  (from the upper double values) we splat the lower double
296  before we to the operation. */
297  a = vec_splat (__A, 0);
298  b = vec_splat (__B, 0);
299  c = a / b;
300  /* Then we merge the lower float result with the original upper
301  float elements from __A. */
302  return (vec_sel (__A, c, mask));
303 #else
304  __A[0] = __A[0] / __B[0];
305  return (__A);
306 #endif
307 }
308 
309 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
310 _mm_sqrt_ss (__m128 __A)
311 {
312  __m128 a, c;
313  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
314  /* PowerISA VSX does not allow partial (for just lower double)
315  * results. So to insure we don't generate spurious exceptions
316  * (from the upper double values) we splat the lower double
317  * before we to the operation. */
318  a = vec_splat (__A, 0);
319  c = vec_sqrt (a);
320  /* Then we merge the lower float result with the original upper
321  * float elements from __A. */
322  return (vec_sel (__A, c, mask));
323 }
324 
325 /* Perform the respective operation on the four SPFP values in A and B. */
326 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
327 _mm_add_ps (__m128 __A, __m128 __B)
328 {
329  return (__m128) ((__v4sf)__A + (__v4sf)__B);
330 }
331 
332 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
333 _mm_sub_ps (__m128 __A, __m128 __B)
334 {
335  return (__m128) ((__v4sf)__A - (__v4sf)__B);
336 }
337 
338 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
339 _mm_mul_ps (__m128 __A, __m128 __B)
340 {
341  return (__m128) ((__v4sf)__A * (__v4sf)__B);
342 }
343 
344 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
345 _mm_div_ps (__m128 __A, __m128 __B)
346 {
347  return (__m128) ((__v4sf)__A / (__v4sf)__B);
348 }
349 
350 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
351 _mm_sqrt_ps (__m128 __A)
352 {
353  return (vec_sqrt ((__v4sf)__A));
354 }
355 
356 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
357 _mm_rcp_ps (__m128 __A)
358 {
359  return (vec_re ((__v4sf)__A));
360 }
361 
362 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
363 _mm_rsqrt_ps (__m128 __A)
364 {
365  return (vec_rsqrte (__A));
366 }
367 
368 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
369 _mm_rcp_ss (__m128 __A)
370 {
371  __m128 a, c;
372  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
373  /* PowerISA VSX does not allow partial (for just lower double)
374  * results. So to insure we don't generate spurious exceptions
375  * (from the upper double values) we splat the lower double
376  * before we to the operation. */
377  a = vec_splat (__A, 0);
378  c = _mm_rcp_ps (a);
379  /* Then we merge the lower float result with the original upper
380  * float elements from __A. */
381  return (vec_sel (__A, c, mask));
382 }
383 
384 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
385 _mm_rsqrt_ss (__m128 __A)
386 {
387  __m128 a, c;
388  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
389  /* PowerISA VSX does not allow partial (for just lower double)
390  * results. So to insure we don't generate spurious exceptions
391  * (from the upper double values) we splat the lower double
392  * before we to the operation. */
393  a = vec_splat (__A, 0);
394  c = vec_rsqrte (a);
395  /* Then we merge the lower float result with the original upper
396  * float elements from __A. */
397  return (vec_sel (__A, c, mask));
398 }
399 
400 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
401 _mm_min_ss (__m128 __A, __m128 __B)
402 {
403  __v4sf a, b, c;
404  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
405  /* PowerISA VSX does not allow partial (for just lower float)
406  * results. So to insure we don't generate spurious exceptions
407  * (from the upper float values) we splat the lower float
408  * before we to the operation. */
409  a = vec_splat ((__v4sf)__A, 0);
410  b = vec_splat ((__v4sf)__B, 0);
411  c = vec_min (a, b);
412  /* Then we merge the lower float result with the original upper
413  * float elements from __A. */
414  return (vec_sel ((__v4sf)__A, c, mask));
415 }
416 
417 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
418 _mm_max_ss (__m128 __A, __m128 __B)
419 {
420  __v4sf a, b, c;
421  static const __vector unsigned int mask = {0xffffffff, 0, 0, 0};
422  /* PowerISA VSX does not allow partial (for just lower float)
423  * results. So to insure we don't generate spurious exceptions
424  * (from the upper float values) we splat the lower float
425  * before we to the operation. */
426  a = vec_splat (__A, 0);
427  b = vec_splat (__B, 0);
428  c = vec_max (a, b);
429  /* Then we merge the lower float result with the original upper
430  * float elements from __A. */
431  return (vec_sel ((__v4sf)__A, c, mask));
432 }
433 
434 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
435 _mm_min_ps (__m128 __A, __m128 __B)
436 {
437  __vector __bool int m = vec_cmpgt ((__v4sf) __B, (__v4sf) __A);
438  return vec_sel (__B, __A, m);
439 }
440 
441 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
442 _mm_max_ps (__m128 __A, __m128 __B)
443 {
444  __vector __bool int m = vec_cmpgt ((__v4sf) __A, (__v4sf) __B);
445  return vec_sel (__B, __A, m);
446 }
447 
448 /* Perform logical bit-wise operations on 128-bit values. */
449 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
450 _mm_and_ps (__m128 __A, __m128 __B)
451 {
452  return ((__m128)vec_and ((__v4sf)__A, (__v4sf)__B));
453 // return __builtin_ia32_andps (__A, __B);
454 }
455 
456 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
457 _mm_andnot_ps (__m128 __A, __m128 __B)
458 {
459  return ((__m128)vec_andc ((__v4sf)__B, (__v4sf)__A));
460 }
461 
462 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
463 _mm_or_ps (__m128 __A, __m128 __B)
464 {
465  return ((__m128)vec_or ((__v4sf)__A, (__v4sf)__B));
466 }
467 
468 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
469 _mm_xor_ps (__m128 __A, __m128 __B)
470 {
471  return ((__m128)vec_xor ((__v4sf)__A, (__v4sf)__B));
472 }
473 
474 /* Perform a comparison on the four SPFP values of A and B. For each
475  element, if the comparison is true, place a mask of all ones in the
476  result, otherwise a mask of zeros. */
477 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
478 _mm_cmpeq_ps (__m128 __A, __m128 __B)
479 {
480  return ((__m128)vec_cmpeq ((__v4sf)__A,(__v4sf) __B));
481 }
482 
483 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
484 _mm_cmplt_ps (__m128 __A, __m128 __B)
485 {
486  return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B));
487 }
488 
489 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
490 _mm_cmple_ps (__m128 __A, __m128 __B)
491 {
492  return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B));
493 }
494 
495 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
496 _mm_cmpgt_ps (__m128 __A, __m128 __B)
497 {
498  return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B));
499 }
500 
501 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
502 _mm_cmpge_ps (__m128 __A, __m128 __B)
503 {
504  return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B));
505 }
506 
507 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
508 _mm_cmpneq_ps (__m128 __A, __m128 __B)
509 {
510  __v4sf temp = (__v4sf ) vec_cmpeq ((__v4sf) __A, (__v4sf)__B);
511  return ((__m128)vec_nor (temp, temp));
512 }
513 
514 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
515 _mm_cmpnlt_ps (__m128 __A, __m128 __B)
516 {
517  return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B));
518 }
519 
520 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
521 _mm_cmpnle_ps (__m128 __A, __m128 __B)
522 {
523  return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B));
524 }
525 
526 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
527 _mm_cmpngt_ps (__m128 __A, __m128 __B)
528 {
529  return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B));
530 }
531 
532 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
533 _mm_cmpnge_ps (__m128 __A, __m128 __B)
534 {
535  return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B));
536 }
537 
538 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
539 _mm_cmpord_ps (__m128 __A, __m128 __B)
540 {
541  __vector unsigned int a, b;
542  __vector unsigned int c, d;
543  static const __vector unsigned int float_exp_mask =
544  { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
545 
546  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
547  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
548  c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a);
549  d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b);
550  return ((__m128 ) vec_and (c, d));
551 }
552 
553 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
554 _mm_cmpunord_ps (__m128 __A, __m128 __B)
555 {
556  __vector unsigned int a, b;
557  __vector unsigned int c, d;
558  static const __vector unsigned int float_exp_mask =
559  { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
560 
561  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
562  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
563  c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask);
564  d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask);
565  return ((__m128 ) vec_or (c, d));
566 }
567 
568 /* Perform a comparison on the lower SPFP values of A and B. If the
569  comparison is true, place a mask of all ones in the result, otherwise a
570  mask of zeros. The upper three SPFP values are passed through from A. */
571 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
572 _mm_cmpeq_ss (__m128 __A, __m128 __B)
573 {
574  static const __vector unsigned int mask =
575  { 0xffffffff, 0, 0, 0 };
576  __v4sf a, b, c;
577  /* PowerISA VMX does not allow partial (for just element 0)
578  * results. So to insure we don't generate spurious exceptions
579  * (from the upper elements) we splat the lower float
580  * before we to the operation. */
581  a = vec_splat ((__v4sf) __A, 0);
582  b = vec_splat ((__v4sf) __B, 0);
583  c = (__v4sf) vec_cmpeq(a, b);
584  /* Then we merge the lower float result with the original upper
585  * float elements from __A. */
586  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
587 }
588 
589 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
590 _mm_cmplt_ss (__m128 __A, __m128 __B)
591 {
592  static const __vector unsigned int mask =
593  { 0xffffffff, 0, 0, 0 };
594  __v4sf a, b, c;
595  /* PowerISA VMX does not allow partial (for just element 0)
596  * results. So to insure we don't generate spurious exceptions
597  * (from the upper elements) we splat the lower float
598  * before we to the operation. */
599  a = vec_splat ((__v4sf) __A, 0);
600  b = vec_splat ((__v4sf) __B, 0);
601  c = (__v4sf) vec_cmplt(a, b);
602  /* Then we merge the lower float result with the original upper
603  * float elements from __A. */
604  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
605 }
606 
607 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
608 _mm_cmple_ss (__m128 __A, __m128 __B)
609 {
610  static const __vector unsigned int mask =
611  { 0xffffffff, 0, 0, 0 };
612  __v4sf a, b, c;
613  /* PowerISA VMX does not allow partial (for just element 0)
614  * results. So to insure we don't generate spurious exceptions
615  * (from the upper elements) we splat the lower float
616  * before we to the operation. */
617  a = vec_splat ((__v4sf) __A, 0);
618  b = vec_splat ((__v4sf) __B, 0);
619  c = (__v4sf) vec_cmple(a, b);
620  /* Then we merge the lower float result with the original upper
621  * float elements from __A. */
622  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
623 }
624 
625 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
626 _mm_cmpgt_ss (__m128 __A, __m128 __B)
627 {
628  static const __vector unsigned int mask =
629  { 0xffffffff, 0, 0, 0 };
630  __v4sf a, b, c;
631  /* PowerISA VMX does not allow partial (for just element 0)
632  * results. So to insure we don't generate spurious exceptions
633  * (from the upper elements) we splat the lower float
634  * before we to the operation. */
635  a = vec_splat ((__v4sf) __A, 0);
636  b = vec_splat ((__v4sf) __B, 0);
637  c = (__v4sf) vec_cmpgt(a, b);
638  /* Then we merge the lower float result with the original upper
639  * float elements from __A. */
640  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
641 }
642 
643 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
644 _mm_cmpge_ss (__m128 __A, __m128 __B)
645 {
646  static const __vector unsigned int mask =
647  { 0xffffffff, 0, 0, 0 };
648  __v4sf a, b, c;
649  /* PowerISA VMX does not allow partial (for just element 0)
650  * results. So to insure we don't generate spurious exceptions
651  * (from the upper elements) we splat the lower float
652  * before we to the operation. */
653  a = vec_splat ((__v4sf) __A, 0);
654  b = vec_splat ((__v4sf) __B, 0);
655  c = (__v4sf) vec_cmpge(a, b);
656  /* Then we merge the lower float result with the original upper
657  * float elements from __A. */
658  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
659 }
660 
661 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
662 _mm_cmpneq_ss (__m128 __A, __m128 __B)
663 {
664  static const __vector unsigned int mask =
665  { 0xffffffff, 0, 0, 0 };
666  __v4sf a, b, c;
667  /* PowerISA VMX does not allow partial (for just element 0)
668  * results. So to insure we don't generate spurious exceptions
669  * (from the upper elements) we splat the lower float
670  * before we to the operation. */
671  a = vec_splat ((__v4sf) __A, 0);
672  b = vec_splat ((__v4sf) __B, 0);
673  c = (__v4sf) vec_cmpeq(a, b);
674  c = vec_nor (c, c);
675  /* Then we merge the lower float result with the original upper
676  * float elements from __A. */
677  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
678 }
679 
680 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
681 _mm_cmpnlt_ss (__m128 __A, __m128 __B)
682 {
683  static const __vector unsigned int mask =
684  { 0xffffffff, 0, 0, 0 };
685  __v4sf a, b, c;
686  /* PowerISA VMX does not allow partial (for just element 0)
687  * results. So to insure we don't generate spurious exceptions
688  * (from the upper elements) we splat the lower float
689  * before we to the operation. */
690  a = vec_splat ((__v4sf) __A, 0);
691  b = vec_splat ((__v4sf) __B, 0);
692  c = (__v4sf) vec_cmpge(a, b);
693  /* Then we merge the lower float result with the original upper
694  * float elements from __A. */
695  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
696 }
697 
698 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
699 _mm_cmpnle_ss (__m128 __A, __m128 __B)
700 {
701  static const __vector unsigned int mask =
702  { 0xffffffff, 0, 0, 0 };
703  __v4sf a, b, c;
704  /* PowerISA VMX does not allow partial (for just element 0)
705  * results. So to insure we don't generate spurious exceptions
706  * (from the upper elements) we splat the lower float
707  * before we to the operation. */
708  a = vec_splat ((__v4sf) __A, 0);
709  b = vec_splat ((__v4sf) __B, 0);
710  c = (__v4sf) vec_cmpgt(a, b);
711  /* Then we merge the lower float result with the original upper
712  * float elements from __A. */
713  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
714 }
715 
716 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
717 _mm_cmpngt_ss (__m128 __A, __m128 __B)
718 {
719  static const __vector unsigned int mask =
720  { 0xffffffff, 0, 0, 0 };
721  __v4sf a, b, c;
722  /* PowerISA VMX does not allow partial (for just element 0)
723  * results. So to insure we don't generate spurious exceptions
724  * (from the upper elements) we splat the lower float
725  * before we to the operation. */
726  a = vec_splat ((__v4sf) __A, 0);
727  b = vec_splat ((__v4sf) __B, 0);
728  c = (__v4sf) vec_cmple(a, b);
729  /* Then we merge the lower float result with the original upper
730  * float elements from __A. */
731  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
732 }
733 
734 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
735 _mm_cmpnge_ss (__m128 __A, __m128 __B)
736 {
737  static const __vector unsigned int mask =
738  { 0xffffffff, 0, 0, 0 };
739  __v4sf a, b, c;
740  /* PowerISA VMX does not allow partial (for just element 0)
741  * results. So to insure we don't generate spurious exceptions
742  * (from the upper elements) we splat the lower float
743  * before we do the operation. */
744  a = vec_splat ((__v4sf) __A, 0);
745  b = vec_splat ((__v4sf) __B, 0);
746  c = (__v4sf) vec_cmplt(a, b);
747  /* Then we merge the lower float result with the original upper
748  * float elements from __A. */
749  return ((__m128)vec_sel ((__v4sf)__A, c, mask));
750 }
751 
752 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
753 _mm_cmpord_ss (__m128 __A, __m128 __B)
754 {
755  __vector unsigned int a, b;
756  __vector unsigned int c, d;
757  static const __vector unsigned int float_exp_mask =
758  { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
759  static const __vector unsigned int mask =
760  { 0xffffffff, 0, 0, 0 };
761 
762  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
763  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
764  c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a);
765  d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b);
766  c = vec_and (c, d);
767  /* Then we merge the lower float result with the original upper
768  * float elements from __A. */
769  return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask));
770 }
771 
772 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
773 _mm_cmpunord_ss (__m128 __A, __m128 __B)
774 {
775  __vector unsigned int a, b;
776  __vector unsigned int c, d;
777  static const __vector unsigned int float_exp_mask =
778  { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
779  static const __vector unsigned int mask =
780  { 0xffffffff, 0, 0, 0 };
781 
782  a = (__vector unsigned int) vec_abs ((__v4sf)__A);
783  b = (__vector unsigned int) vec_abs ((__v4sf)__B);
784  c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask);
785  d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask);
786  c = vec_or (c, d);
787  /* Then we merge the lower float result with the original upper
788  * float elements from __A. */
789  return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask));
790 }
791 
792 /* Compare the lower SPFP values of A and B and return 1 if true
793  and 0 if false. */
794 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
795 _mm_comieq_ss (__m128 __A, __m128 __B)
796 {
797  return (__A[0] == __B[0]);
798 }
799 
800 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
801 _mm_comilt_ss (__m128 __A, __m128 __B)
802 {
803  return (__A[0] < __B[0]);
804 }
805 
806 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
807 _mm_comile_ss (__m128 __A, __m128 __B)
808 {
809  return (__A[0] <= __B[0]);
810 }
811 
812 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
813 _mm_comigt_ss (__m128 __A, __m128 __B)
814 {
815  return (__A[0] > __B[0]);
816 }
817 
818 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
819 _mm_comige_ss (__m128 __A, __m128 __B)
820 {
821  return (__A[0] >= __B[0]);
822 }
823 
824 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
825 _mm_comineq_ss (__m128 __A, __m128 __B)
826 {
827  return (__A[0] != __B[0]);
828 }
829 
830 /* FIXME
831  * The __mm_ucomi??_ss implementations below are exactly the same as
832  * __mm_comi??_ss because GCC for PowerPC only generates unordered
833  * compares (scalar and vector).
834  * Technically __mm_comieq_ss et al should be using the ordered
835  * compare and signal for QNaNs.
836  * The __mm_ucomieq_sd et all should be OK, as is.
837  */
838 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
839 _mm_ucomieq_ss (__m128 __A, __m128 __B)
840 {
841  return (__A[0] == __B[0]);
842 }
843 
844 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
845 _mm_ucomilt_ss (__m128 __A, __m128 __B)
846 {
847  return (__A[0] < __B[0]);
848 }
849 
850 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
851 _mm_ucomile_ss (__m128 __A, __m128 __B)
852 {
853  return (__A[0] <= __B[0]);
854 }
855 
856 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
857 _mm_ucomigt_ss (__m128 __A, __m128 __B)
858 {
859  return (__A[0] > __B[0]);
860 }
861 
862 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
863 _mm_ucomige_ss (__m128 __A, __m128 __B)
864 {
865  return (__A[0] >= __B[0]);
866 }
867 
868 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
869 _mm_ucomineq_ss (__m128 __A, __m128 __B)
870 {
871  return (__A[0] != __B[0]);
872 }
873 
874 extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__))
875 _mm_cvtss_f32 (__m128 __A)
876 {
877  return ((__v4sf)__A)[0];
878 }
879 
880 /* Convert the lower SPFP value to a 32-bit integer according to the current
881  rounding mode. */
882 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
883 _mm_cvtss_si32 (__m128 __A)
884 {
885  __m64 res = 0;
886 #ifdef _ARCH_PWR8
887  double dtmp;
888  __asm__(
889 #ifdef __LITTLE_ENDIAN__
890  "xxsldwi %x0,%x0,%x0,3;\n"
891 #endif
892  "xscvspdp %x2,%x0;\n"
893  "fctiw %2,%2;\n"
894  "mfvsrd %1,%x2;\n"
895  : "+wa" (__A),
896  "=r" (res),
897  "=f" (dtmp)
898  : );
899 #else
900  res = __builtin_rint(__A[0]);
901 #endif
902  return (res);
903 }
904 
905 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
906 _mm_cvt_ss2si (__m128 __A)
907 {
908  return _mm_cvtss_si32 (__A);
909 }
910 
911 /* Convert the lower SPFP value to a 32-bit integer according to the
912  current rounding mode. */
913 
914 /* Intel intrinsic. */
915 extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
916 _mm_cvtss_si64 (__m128 __A)
917 {
918  __m64 res = 0;
919 #ifdef _ARCH_PWR8
920  double dtmp;
921  __asm__(
922 #ifdef __LITTLE_ENDIAN__
923  "xxsldwi %x0,%x0,%x0,3;\n"
924 #endif
925  "xscvspdp %x2,%x0;\n"
926  "fctid %2,%2;\n"
927  "mfvsrd %1,%x2;\n"
928  : "+wa" (__A),
929  "=r" (res),
930  "=f" (dtmp)
931  : );
932 #else
933  res = __builtin_llrint(__A[0]);
934 #endif
935  return (res);
936 }
937 
938 /* Microsoft intrinsic. */
939 extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
940 _mm_cvtss_si64x (__m128 __A)
941 {
942  return _mm_cvtss_si64 ((__v4sf) __A);
943 }
944 
945 /* Constants for use with _mm_prefetch. */
946 enum _mm_hint
947 {
948  /* _MM_HINT_ET is _MM_HINT_T with set 3rd bit. */
949  _MM_HINT_ET0 = 7,
950  _MM_HINT_ET1 = 6,
951  _MM_HINT_T0 = 3,
952  _MM_HINT_T1 = 2,
953  _MM_HINT_T2 = 1,
954  _MM_HINT_NTA = 0
955 };
956 
957 /* Loads one cache line from address P to a location "closer" to the
958  processor. The selector I specifies the type of prefetch operation. */
959 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
960 _mm_prefetch (const void *__P, enum _mm_hint __I)
961 {
962  /* Current PowerPC will ignores the hint parameters. */
963  __builtin_prefetch (__P);
964 }
965 
966 /* Convert the two lower SPFP values to 32-bit integers according to the
967  current rounding mode. Return the integers in packed form. */
968 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
969 _mm_cvtps_pi32 (__m128 __A)
970 {
971  /* Splat two lower SPFP values to both halves. */
972  __v4sf temp, rounded;
973  __vector unsigned long long result;
974 
975  /* Splat two lower SPFP values to both halves. */
976  temp = (__v4sf) vec_splat ((__vector long long)__A, 0);
977  rounded = vec_rint(temp);
978  result = (__vector unsigned long long) vec_cts (rounded, 0);
979 
980  return (__m64) ((__vector long long) result)[0];
981 }
982 
983 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
984 _mm_cvt_ps2pi (__m128 __A)
985 {
986  return _mm_cvtps_pi32 (__A);
987 }
988 
989 /* Truncate the lower SPFP value to a 32-bit integer. */
990 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
991 _mm_cvttss_si32 (__m128 __A)
992 {
993  /* Extract the lower float element. */
994  float temp = __A[0];
995  /* truncate to 32-bit integer and return. */
996  return temp;
997 }
998 
999 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1000 _mm_cvtt_ss2si (__m128 __A)
1001 {
1002  return _mm_cvttss_si32 (__A);
1003 }
1004 
1005 /* Intel intrinsic. */
1006 extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1007 _mm_cvttss_si64 (__m128 __A)
1008 {
1009  /* Extract the lower float element. */
1010  float temp = __A[0];
1011  /* truncate to 32-bit integer and return. */
1012  return temp;
1013 }
1014 
1015 /* Microsoft intrinsic. */
1016 extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1017 _mm_cvttss_si64x (__m128 __A)
1018 {
1019  /* Extract the lower float element. */
1020  float temp = __A[0];
1021  /* truncate to 32-bit integer and return. */
1022  return temp;
1023 }
1024 
1025 /* Truncate the two lower SPFP values to 32-bit integers. Return the
1026  integers in packed form. */
1027 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1028 _mm_cvttps_pi32 (__m128 __A)
1029 {
1030  __v4sf temp;
1031  __vector unsigned long long result;
1032 
1033  /* Splat two lower SPFP values to both halves. */
1034  temp = (__v4sf) vec_splat ((__vector long long)__A, 0);
1035  result = (__vector unsigned long long) vec_cts (temp, 0);
1036 
1037  return (__m64) ((__vector long long) result)[0];
1038 }
1039 
1040 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1041 _mm_cvtt_ps2pi (__m128 __A)
1042 {
1043  return _mm_cvttps_pi32 (__A);
1044 }
1045 
1046 /* Convert B to a SPFP value and insert it as element zero in A. */
1047 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1048 _mm_cvtsi32_ss (__m128 __A, int __B)
1049 {
1050  float temp = __B;
1051  __A[0] = temp;
1052 
1053  return __A;
1054 }
1055 
1056 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1057 _mm_cvt_si2ss (__m128 __A, int __B)
1058 {
1059  return _mm_cvtsi32_ss (__A, __B);
1060 }
1061 
1062 /* Convert B to a SPFP value and insert it as element zero in A. */
1063 /* Intel intrinsic. */
1064 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1065 _mm_cvtsi64_ss (__m128 __A, long long __B)
1066 {
1067  float temp = __B;
1068  __A[0] = temp;
1069 
1070  return __A;
1071 }
1072 
1073 /* Microsoft intrinsic. */
1074 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1075 _mm_cvtsi64x_ss (__m128 __A, long long __B)
1076 {
1077  return _mm_cvtsi64_ss (__A, __B);
1078 }
1079 
1080 /* Convert the two 32-bit values in B to SPFP form and insert them
1081  as the two lower elements in A. */
1082 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1083 _mm_cvtpi32_ps (__m128 __A, __m64 __B)
1084 {
1085  __vector signed int vm1;
1086  __vector float vf1;
1087 
1088  vm1 = (__vector signed int) (__vector unsigned long long) {__B, __B};
1089  vf1 = (__vector float) vec_ctf (vm1, 0);
1090 
1091  return ((__m128) (__vector unsigned long long)
1092  { ((__vector unsigned long long)vf1) [0],
1093  ((__vector unsigned long long)__A) [1]});
1094 }
1095 
1096 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1097 _mm_cvt_pi2ps (__m128 __A, __m64 __B)
1098 {
1099  return _mm_cvtpi32_ps (__A, __B);
1100 }
1101 
1102 /* Convert the four signed 16-bit values in A to SPFP form. */
1103 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1104 _mm_cvtpi16_ps (__m64 __A)
1105 {
1106  __vector signed short vs8;
1107  __vector signed int vi4;
1108  __vector float vf1;
1109 
1110  vs8 = (__vector signed short) (__vector unsigned long long) { __A, __A };
1111  vi4 = vec_vupklsh (vs8);
1112  vf1 = (__vector float) vec_ctf (vi4, 0);
1113 
1114  return (__m128) vf1;
1115 }
1116 
1117 /* Convert the four unsigned 16-bit values in A to SPFP form. */
1118 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1119 _mm_cvtpu16_ps (__m64 __A)
1120 {
1121  const __vector unsigned short zero =
1122  { 0, 0, 0, 0, 0, 0, 0, 0 };
1123  __vector unsigned short vs8;
1124  __vector unsigned int vi4;
1125  __vector float vf1;
1126 
1127  vs8 = (__vector unsigned short) (__vector unsigned long long) { __A, __A };
1128  vi4 = (__vector unsigned int) vec_mergel
1129 #ifdef __LITTLE_ENDIAN__
1130  (vs8, zero);
1131 #else
1132  (zero, vs8);
1133 #endif
1134  vf1 = (__vector float) vec_ctf (vi4, 0);
1135 
1136  return (__m128) vf1;
1137 }
1138 
1139 /* Convert the low four signed 8-bit values in A to SPFP form. */
1140 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1141 _mm_cvtpi8_ps (__m64 __A)
1142 {
1143  __vector signed char vc16;
1144  __vector signed short vs8;
1145  __vector signed int vi4;
1146  __vector float vf1;
1147 
1148  vc16 = (__vector signed char) (__vector unsigned long long) { __A, __A };
1149  vs8 = vec_vupkhsb (vc16);
1150  vi4 = vec_vupkhsh (vs8);
1151  vf1 = (__vector float) vec_ctf (vi4, 0);
1152 
1153  return (__m128) vf1;
1154 }
1155 
1156 /* Convert the low four unsigned 8-bit values in A to SPFP form. */
1157 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1158 
1159 _mm_cvtpu8_ps (__m64 __A)
1160 {
1161  const __vector unsigned char zero =
1162  { 0, 0, 0, 0, 0, 0, 0, 0 };
1163  __vector unsigned char vc16;
1164  __vector unsigned short vs8;
1165  __vector unsigned int vi4;
1166  __vector float vf1;
1167 
1168  vc16 = (__vector unsigned char) (__vector unsigned long long) { __A, __A };
1169 #ifdef __LITTLE_ENDIAN__
1170  vs8 = (__vector unsigned short) vec_mergel (vc16, zero);
1171  vi4 = (__vector unsigned int) vec_mergeh (vs8,
1172  (__vector unsigned short) zero);
1173 #else
1174  vs8 = (__vector unsigned short) vec_mergel (zero, vc16);
1175  vi4 = (__vector unsigned int) vec_mergeh ((__vector unsigned short) zero,
1176  vs8);
1177 #endif
1178  vf1 = (__vector float) vec_ctf (vi4, 0);
1179 
1180  return (__m128) vf1;
1181 }
1182 
1183 /* Convert the four signed 32-bit values in A and B to SPFP form. */
1184 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1185 _mm_cvtpi32x2_ps (__m64 __A, __m64 __B)
1186 {
1187  __vector signed int vi4;
1188  __vector float vf4;
1189 
1190  vi4 = (__vector signed int) (__vector unsigned long long) { __A, __B };
1191  vf4 = (__vector float) vec_ctf (vi4, 0);
1192  return (__m128) vf4;
1193 }
1194 
1195 /* Convert the four SPFP values in A to four signed 16-bit integers. */
1196 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1197 _mm_cvtps_pi16 (__m128 __A)
1198 {
1199  __v4sf rounded;
1200  __vector signed int temp;
1201  __vector unsigned long long result;
1202 
1203  rounded = vec_rint(__A);
1204  temp = vec_cts (rounded, 0);
1205  result = (__vector unsigned long long) vec_pack (temp, temp);
1206 
1207  return (__m64) ((__vector long long) result)[0];
1208 }
1209 
1210 /* Convert the four SPFP values in A to four signed 8-bit integers. */
1211 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1212 _mm_cvtps_pi8 (__m128 __A)
1213 {
1214  __v4sf rounded;
1215  __vector signed int tmp_i;
1216  static const __vector signed int zero = {0, 0, 0, 0};
1217  __vector signed short tmp_s;
1218  __vector signed char res_v;
1219 
1220  rounded = vec_rint(__A);
1221  tmp_i = vec_cts (rounded, 0);
1222  tmp_s = vec_pack (tmp_i, zero);
1223  res_v = vec_pack (tmp_s, tmp_s);
1224  return (__m64) ((__vector long long) res_v)[0];
1225 }
1226 
1227 /* Selects four specific SPFP values from A and B based on MASK. */
1228 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1229 
1230 _mm_shuffle_ps (__m128 __A, __m128 __B, int const __mask)
1231 {
1232  unsigned long element_selector_10 = __mask & 0x03;
1233  unsigned long element_selector_32 = (__mask >> 2) & 0x03;
1234  unsigned long element_selector_54 = (__mask >> 4) & 0x03;
1235  unsigned long element_selector_76 = (__mask >> 6) & 0x03;
1236  static const unsigned int permute_selectors[4] =
1237  {
1238 #ifdef __LITTLE_ENDIAN__
1239  0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
1240 #else
1241  0x00010203, 0x04050607, 0x08090A0B, 0x0C0D0E0F
1242 #endif
1243  };
1244  __vector unsigned int t;
1245 
1246  t[0] = permute_selectors[element_selector_10];
1247  t[1] = permute_selectors[element_selector_32];
1248  t[2] = permute_selectors[element_selector_54] + 0x10101010;
1249  t[3] = permute_selectors[element_selector_76] + 0x10101010;
1250  return vec_perm ((__v4sf) __A, (__v4sf)__B, (__vector unsigned char)t);
1251 }
1252 
1253 /* Selects and interleaves the upper two SPFP values from A and B. */
1254 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1255 _mm_unpackhi_ps (__m128 __A, __m128 __B)
1256 {
1257  return (__m128) vec_vmrglw ((__v4sf) __A, (__v4sf)__B);
1258 }
1259 
1260 /* Selects and interleaves the lower two SPFP values from A and B. */
1261 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1262 _mm_unpacklo_ps (__m128 __A, __m128 __B)
1263 {
1264  return (__m128) vec_vmrghw ((__v4sf) __A, (__v4sf)__B);
1265 }
1266 
1267 /* Sets the upper two SPFP values with 64-bits of data loaded from P;
1268  the lower two values are passed through from A. */
1269 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1270 _mm_loadh_pi (__m128 __A, __m64 const *__P)
1271 {
1272  __vector unsigned long long __a = (__vector unsigned long long)__A;
1273  __vector unsigned long long __p = vec_splats(*__P);
1274  __a [1] = __p [1];
1275 
1276  return (__m128)__a;
1277 }
1278 
1279 /* Stores the upper two SPFP values of A into P. */
1280 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1281 _mm_storeh_pi (__m64 *__P, __m128 __A)
1282 {
1283  __vector unsigned long long __a = (__vector unsigned long long) __A;
1284 
1285  *__P = __a[1];
1286 }
1287 
1288 /* Moves the upper two values of B into the lower two values of A. */
1289 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1290 _mm_movehl_ps (__m128 __A, __m128 __B)
1291 {
1292  return (__m128) vec_mergel ((__vector unsigned long long)__B,
1293  (__vector unsigned long long)__A);
1294 }
1295 
1296 /* Moves the lower two values of B into the upper two values of A. */
1297 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1298 _mm_movelh_ps (__m128 __A, __m128 __B)
1299 {
1300  return (__m128) vec_mergeh ((__vector unsigned long long)__A,
1301  (__vector unsigned long long)__B);
1302 }
1303 
1304 /* Sets the lower two SPFP values with 64-bits of data loaded from P;
1305  the upper two values are passed through from A. */
1306 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1307 _mm_loadl_pi (__m128 __A, __m64 const *__P)
1308 {
1309  __vector unsigned long long __a = (__vector unsigned long long)__A;
1310  __vector unsigned long long __p = vec_splats(*__P);
1311  __a [0] = __p [0];
1312 
1313  return (__m128)__a;
1314 }
1315 
1316 /* Stores the lower two SPFP values of A into P. */
1317 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1318 _mm_storel_pi (__m64 *__P, __m128 __A)
1319 {
1320  __vector unsigned long long __a = (__vector unsigned long long) __A;
1321 
1322  *__P = __a[0];
1323 }
1324 
1325 #ifdef _ARCH_PWR8
1326 /* Intrinsic functions that require PowerISA 2.07 minimum. */
1327 
1328 /* Creates a 4-bit mask from the most significant bits of the SPFP values. */
1329 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1330 _mm_movemask_ps (__m128 __A)
1331 {
1332  __vector unsigned long long result;
1333  static const __vector unsigned int perm_mask =
1334  {
1335 #ifdef __LITTLE_ENDIAN__
1336  0x00204060, 0x80808080, 0x80808080, 0x80808080
1337 #else
1338  0x80808080, 0x80808080, 0x80808080, 0x00204060
1339 #endif
1340  };
1341 
1342  result = ((__vector unsigned long long)
1343  vec_vbpermq ((__vector unsigned char) __A,
1344  (__vector unsigned char) perm_mask));
1345 
1346 #ifdef __LITTLE_ENDIAN__
1347  return result[1];
1348 #else
1349  return result[0];
1350 #endif
1351 }
1352 #endif /* _ARCH_PWR8 */
1353 
1354 /* Create a vector with all four elements equal to *P. */
1355 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1356 _mm_load1_ps (float const *__P)
1357 {
1358  return _mm_set1_ps (*__P);
1359 }
1360 
1361 extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1362 _mm_load_ps1 (float const *__P)
1363 {
1364  return _mm_load1_ps (__P);
1365 }
1366 
1367 /* Extracts one of the four words of A. The selector N must be immediate. */
1368 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1369 _mm_extract_pi16 (__m64 const __A, int const __N)
1370 {
1371  unsigned int shiftr = __N & 3;
1372 #ifdef __BIG_ENDIAN__
1373  shiftr = 3 - shiftr;
1374 #endif
1375 
1376  return ((__A >> (shiftr * 16)) & 0xffff);
1377 }
1378 
1379 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1380 _m_pextrw (__m64 const __A, int const __N)
1381 {
1382  return _mm_extract_pi16 (__A, __N);
1383 }
1384 
1385 /* Inserts word D into one of four words of A. The selector N must be
1386  immediate. */
1387 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1388 _mm_insert_pi16 (__m64 const __A, int const __D, int const __N)
1389 {
1390  const int shiftl = (__N & 3) * 16;
1391  const __m64 shiftD = (const __m64) __D << shiftl;
1392  const __m64 mask = 0xffffUL << shiftl;
1393  __m64 result = (__A & (~mask)) | (shiftD & mask);
1394 
1395  return (result);
1396 }
1397 
1398 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1399 _m_pinsrw (__m64 const __A, int const __D, int const __N)
1400 {
1401  return _mm_insert_pi16 (__A, __D, __N);
1402 }
1403 
1404 /* Compute the element-wise maximum of signed 16-bit values. */
1405 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1406 
1407 _mm_max_pi16 (__m64 __A, __m64 __B)
1408 {
1409 #if _ARCH_PWR8
1410  __vector signed short a, b, r;
1411  __vector __bool short c;
1412 
1413  a = (__vector signed short)vec_splats (__A);
1414  b = (__vector signed short)vec_splats (__B);
1415  c = (__vector __bool short)vec_cmpgt (a, b);
1416  r = vec_sel (b, a, c);
1417  return (__m64) ((__vector long long) r)[0];
1418 #else
1419  __m64_union m1, m2, res;
1420 
1421  m1.as_m64 = __A;
1422  m2.as_m64 = __B;
1423 
1424  res.as_short[0] =
1425  (m1.as_short[0] > m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0];
1426  res.as_short[1] =
1427  (m1.as_short[1] > m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1];
1428  res.as_short[2] =
1429  (m1.as_short[2] > m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2];
1430  res.as_short[3] =
1431  (m1.as_short[3] > m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3];
1432 
1433  return (__m64) res.as_m64;
1434 #endif
1435 }
1436 
1437 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1438 _m_pmaxsw (__m64 __A, __m64 __B)
1439 {
1440  return _mm_max_pi16 (__A, __B);
1441 }
1442 
1443 /* Compute the element-wise maximum of unsigned 8-bit values. */
1444 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1445 _mm_max_pu8 (__m64 __A, __m64 __B)
1446 {
1447 #if _ARCH_PWR8
1448  __vector unsigned char a, b, r;
1449  __vector __bool char c;
1450 
1451  a = (__vector unsigned char)vec_splats (__A);
1452  b = (__vector unsigned char)vec_splats (__B);
1453  c = (__vector __bool char)vec_cmpgt (a, b);
1454  r = vec_sel (b, a, c);
1455  return (__m64) ((__vector long long) r)[0];
1456 #else
1457  __m64_union m1, m2, res;
1458  long i;
1459 
1460  m1.as_m64 = __A;
1461  m2.as_m64 = __B;
1462 
1463 
1464  for (i = 0; i < 8; i++)
1465  res.as_char[i] =
1466  ((unsigned char) m1.as_char[i] > (unsigned char) m2.as_char[i]) ?
1467  m1.as_char[i] : m2.as_char[i];
1468 
1469  return (__m64) res.as_m64;
1470 #endif
1471 }
1472 
1473 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1474 _m_pmaxub (__m64 __A, __m64 __B)
1475 {
1476  return _mm_max_pu8 (__A, __B);
1477 }
1478 
1479 /* Compute the element-wise minimum of signed 16-bit values. */
1480 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1481 _mm_min_pi16 (__m64 __A, __m64 __B)
1482 {
1483 #if _ARCH_PWR8
1484  __vector signed short a, b, r;
1485  __vector __bool short c;
1486 
1487  a = (__vector signed short)vec_splats (__A);
1488  b = (__vector signed short)vec_splats (__B);
1489  c = (__vector __bool short)vec_cmplt (a, b);
1490  r = vec_sel (b, a, c);
1491  return (__m64) ((__vector long long) r)[0];
1492 #else
1493  __m64_union m1, m2, res;
1494 
1495  m1.as_m64 = __A;
1496  m2.as_m64 = __B;
1497 
1498  res.as_short[0] =
1499  (m1.as_short[0] < m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0];
1500  res.as_short[1] =
1501  (m1.as_short[1] < m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1];
1502  res.as_short[2] =
1503  (m1.as_short[2] < m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2];
1504  res.as_short[3] =
1505  (m1.as_short[3] < m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3];
1506 
1507  return (__m64) res.as_m64;
1508 #endif
1509 }
1510 
1511 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1512 _m_pminsw (__m64 __A, __m64 __B)
1513 {
1514  return _mm_min_pi16 (__A, __B);
1515 }
1516 
1517 /* Compute the element-wise minimum of unsigned 8-bit values. */
1518 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1519 _mm_min_pu8 (__m64 __A, __m64 __B)
1520 {
1521 #if _ARCH_PWR8
1522  __vector unsigned char a, b, r;
1523  __vector __bool char c;
1524 
1525  a = (__vector unsigned char)vec_splats (__A);
1526  b = (__vector unsigned char)vec_splats (__B);
1527  c = (__vector __bool char)vec_cmplt (a, b);
1528  r = vec_sel (b, a, c);
1529  return (__m64) ((__vector long long) r)[0];
1530 #else
1531  __m64_union m1, m2, res;
1532  long i;
1533 
1534  m1.as_m64 = __A;
1535  m2.as_m64 = __B;
1536 
1537 
1538  for (i = 0; i < 8; i++)
1539  res.as_char[i] =
1540  ((unsigned char) m1.as_char[i] < (unsigned char) m2.as_char[i]) ?
1541  m1.as_char[i] : m2.as_char[i];
1542 
1543  return (__m64) res.as_m64;
1544 #endif
1545 }
1546 
1547 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1548 _m_pminub (__m64 __A, __m64 __B)
1549 {
1550  return _mm_min_pu8 (__A, __B);
1551 }
1552 
1553 /* Create an 8-bit mask of the signs of 8-bit values. */
1554 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1555 _mm_movemask_pi8 (__m64 __A)
1556 {
1557  unsigned long long p =
1558 #ifdef __LITTLE_ENDIAN__
1559  0x0008101820283038UL; // permute control for sign bits
1560 #else
1561  0x3830282018100800UL; // permute control for sign bits
1562 #endif
1563  return __builtin_bpermd (p, __A);
1564 }
1565 
1566 extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1567 _m_pmovmskb (__m64 __A)
1568 {
1569  return _mm_movemask_pi8 (__A);
1570 }
1571 
1572 /* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values
1573  in B and produce the high 16 bits of the 32-bit results. */
1574 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1575 _mm_mulhi_pu16 (__m64 __A, __m64 __B)
1576 {
1577  __vector unsigned short a, b;
1578  __vector unsigned short c;
1579  __vector unsigned int w0, w1;
1580  __vector unsigned char xform1 = {
1581 #ifdef __LITTLE_ENDIAN__
1582  0x02, 0x03, 0x12, 0x13, 0x06, 0x07, 0x16, 0x17,
1583  0x0A, 0x0B, 0x1A, 0x1B, 0x0E, 0x0F, 0x1E, 0x1F
1584 #else
1585  0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15,
1586  0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15
1587 #endif
1588  };
1589 
1590  a = (__vector unsigned short)vec_splats (__A);
1591  b = (__vector unsigned short)vec_splats (__B);
1592 
1593  w0 = vec_vmuleuh (a, b);
1594  w1 = vec_vmulouh (a, b);
1595  c = (__vector unsigned short)vec_perm (w0, w1, xform1);
1596 
1597  return (__m64) ((__vector long long) c)[0];
1598 }
1599 
1600 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1601 _m_pmulhuw (__m64 __A, __m64 __B)
1602 {
1603  return _mm_mulhi_pu16 (__A, __B);
1604 }
1605 
1606 /* Return a combination of the four 16-bit values in A. The selector
1607  must be an immediate. */
1608 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1609 _mm_shuffle_pi16 (__m64 __A, int const __N)
1610 {
1611  unsigned long element_selector_10 = __N & 0x03;
1612  unsigned long element_selector_32 = (__N >> 2) & 0x03;
1613  unsigned long element_selector_54 = (__N >> 4) & 0x03;
1614  unsigned long element_selector_76 = (__N >> 6) & 0x03;
1615  static const unsigned short permute_selectors[4] =
1616  {
1617 #ifdef __LITTLE_ENDIAN__
1618  0x0908, 0x0B0A, 0x0D0C, 0x0F0E
1619 #else
1620  0x0607, 0x0405, 0x0203, 0x0001
1621 #endif
1622  };
1623  __m64_union t;
1624  __vector unsigned long long a, p, r;
1625 
1626 #ifdef __LITTLE_ENDIAN__
1627  t.as_short[0] = permute_selectors[element_selector_10];
1628  t.as_short[1] = permute_selectors[element_selector_32];
1629  t.as_short[2] = permute_selectors[element_selector_54];
1630  t.as_short[3] = permute_selectors[element_selector_76];
1631 #else
1632  t.as_short[3] = permute_selectors[element_selector_10];
1633  t.as_short[2] = permute_selectors[element_selector_32];
1634  t.as_short[1] = permute_selectors[element_selector_54];
1635  t.as_short[0] = permute_selectors[element_selector_76];
1636 #endif
1637  p = vec_splats (t.as_m64);
1638  a = vec_splats (__A);
1639  r = vec_perm (a, a, (__vector unsigned char)p);
1640  return (__m64) ((__vector long long) r)[0];
1641 }
1642 
1643 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1644 _m_pshufw (__m64 __A, int const __N)
1645 {
1646  return _mm_shuffle_pi16 (__A, __N);
1647 }
1648 
1649 /* Conditionally store byte elements of A into P. The high bit of each
1650  byte in the selector N determines whether the corresponding byte from
1651  A is stored. */
1652 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1653 _mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P)
1654 {
1655  __m64 hibit = 0x8080808080808080UL;
1656  __m64 mask, tmp;
1657  __m64 *p = (__m64*)__P;
1658 
1659  tmp = *p;
1660  mask = _mm_cmpeq_pi8 ((__N & hibit), hibit);
1661  tmp = (tmp & (~mask)) | (__A & mask);
1662  *p = tmp;
1663 }
1664 
1665 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1666 _m_maskmovq (__m64 __A, __m64 __N, char *__P)
1667 {
1668  _mm_maskmove_si64 (__A, __N, __P);
1669 }
1670 
1671 /* Compute the rounded averages of the unsigned 8-bit values in A and B. */
1672 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1673 _mm_avg_pu8 (__m64 __A, __m64 __B)
1674 {
1675  __vector unsigned char a, b, c;
1676 
1677  a = (__vector unsigned char)vec_splats (__A);
1678  b = (__vector unsigned char)vec_splats (__B);
1679  c = vec_avg (a, b);
1680  return (__m64) ((__vector long long) c)[0];
1681 }
1682 
1683 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1684 _m_pavgb (__m64 __A, __m64 __B)
1685 {
1686  return _mm_avg_pu8 (__A, __B);
1687 }
1688 
1689 /* Compute the rounded averages of the unsigned 16-bit values in A and B. */
1690 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1691 _mm_avg_pu16 (__m64 __A, __m64 __B)
1692 {
1693  __vector unsigned short a, b, c;
1694 
1695  a = (__vector unsigned short)vec_splats (__A);
1696  b = (__vector unsigned short)vec_splats (__B);
1697  c = vec_avg (a, b);
1698  return (__m64) ((__vector long long) c)[0];
1699 }
1700 
1701 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1702 _m_pavgw (__m64 __A, __m64 __B)
1703 {
1704  return _mm_avg_pu16 (__A, __B);
1705 }
1706 
1707 /* Compute the sum of the absolute differences of the unsigned 8-bit
1708  values in A and B. Return the value in the lower 16-bit word; the
1709  upper words are cleared. */
1710 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1711 _mm_sad_pu8 (__m64 __A, __m64 __B)
1712 {
1713  __vector unsigned char a, b;
1714  __vector unsigned char vmin, vmax, vabsdiff;
1715  __vector signed int vsum;
1716  const __vector unsigned int zero =
1717  { 0, 0, 0, 0 };
1718  __m64_union result = {0};
1719 
1720  a = (__vector unsigned char) (__vector unsigned long long) { 0UL, __A };
1721  b = (__vector unsigned char) (__vector unsigned long long) { 0UL, __B };
1722  vmin = vec_min (a, b);
1723  vmax = vec_max (a, b);
1724  vabsdiff = vec_sub (vmax, vmin);
1725  /* Sum four groups of bytes into integers. */
1726  vsum = (__vector signed int) vec_sum4s (vabsdiff, zero);
1727  /* Sum across four integers with integer result. */
1728  vsum = vec_sums (vsum, (__vector signed int) zero);
1729  /* The sum is in the right most 32-bits of the vector result.
1730  Transfer to a GPR and truncate to 16 bits. */
1731  result.as_short[0] = vsum[3];
1732  return result.as_m64;
1733 }
1734 
1735 extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1736 _m_psadbw (__m64 __A, __m64 __B)
1737 {
1738  return _mm_sad_pu8 (__A, __B);
1739 }
1740 
1741 /* Stores the data in A to the address P without polluting the caches. */
1742 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1743 _mm_stream_pi (__m64 *__P, __m64 __A)
1744 {
1745  /* Use the data cache block touch for store transient. */
1746  __asm__ (
1747  " dcbtstt 0,%0"
1748  :
1749  : "b" (__P)
1750  : "memory"
1751  );
1752  *__P = __A;
1753 }
1754 
1755 /* Likewise. The address must be 16-byte aligned. */
1756 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1757 _mm_stream_ps (float *__P, __m128 __A)
1758 {
1759  /* Use the data cache block touch for store transient. */
1760  __asm__ (
1761  " dcbtstt 0,%0"
1762  :
1763  : "b" (__P)
1764  : "memory"
1765  );
1766  _mm_store_ps (__P, __A);
1767 }
1768 
1769 /* Guarantees that every preceding store is globally visible before
1770  any subsequent store. */
1771 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1772 _mm_sfence (void)
1773 {
1774  /* Generate a light weight sync. */
1775  __atomic_thread_fence (__ATOMIC_RELEASE);
1776 }
1777 
1778 /* The execution of the next instruction is delayed by an implementation
1779  specific amount of time. The instruction does not modify the
1780  architectural state. This is after the pop_options pragma because
1781  it does not require SSE support in the processor--the encoding is a
1782  nop on processors that do not support it. */
1783 extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__))
1784 _mm_pause (void)
1785 {
1786  /* There is no exact match with this construct, but the following is
1787  close to the desired effect. */
1788 #if _ARCH_PWR8
1789  /* On power8 and later processors we can depend on Program Priority
1790  (PRI) and associated "very low" PPI setting. Since we don't know
1791  what PPI this thread is running at we: 1) save the current PRI
1792  from the PPR SPR into a local GRP, 2) set the PRI to "very low*
1793  via the special or 31,31,31 encoding. 3) issue an "isync" to
1794  insure the PRI change takes effect before we execute any more
1795  instructions.
1796  Now we can execute a lwsync (release barrier) while we execute
1797  this thread at "very low" PRI. Finally we restore the original
1798  PRI and continue execution. */
1799  unsigned long __PPR;
1800 
1801  __asm__ volatile (
1802  " mfppr %0;"
1803  " or 31,31,31;"
1804  " isync;"
1805  " lwsync;"
1806  " isync;"
1807  " mtppr %0;"
1808  : "=r" (__PPR)
1809  :
1810  : "memory"
1811  );
1812 #else
1813  /* For older processor where we may not even have Program Priority
1814  controls we can only depend on Heavy Weight Sync. */
1815  __atomic_thread_fence (__ATOMIC_SEQ_CST);
1816 #endif
1817 }
1818 
1819 /* Transpose the 4x4 matrix composed of row[0-3]. */
1820 #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
1821 do { \
1822  __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \
1823  __v4sf __t0 = vec_vmrghw (__r0, __r1); \
1824  __v4sf __t1 = vec_vmrghw (__r2, __r3); \
1825  __v4sf __t2 = vec_vmrglw (__r0, __r1); \
1826  __v4sf __t3 = vec_vmrglw (__r2, __r3); \
1827  (row0) = (__v4sf)vec_mergeh ((__vector long long)__t0, \
1828  (__vector long long)__t1); \
1829  (row1) = (__v4sf)vec_mergel ((__vector long long)__t0, \
1830  (__vector long long)__t1); \
1831  (row2) = (__v4sf)vec_mergeh ((__vector long long)__t2, \
1832  (__vector long long)__t3); \
1833  (row3) = (__v4sf)vec_mergel ((__vector long long)__t2, \
1834  (__vector long long)__t3); \
1835 } while (0)
1836 
1837 /* For backward source compatibility. */
1838 //# include <emmintrin.h>
1839 
1840 #else
1841 #include_next <xmmintrin.h>
1842 #endif /* defined(__linux__) && defined(__ppc64__) */
1843 
1844 #endif /* _XMMINTRIN_H_INCLUDED */
__device__ __2f16 b
__device__ int
__device__ __2f16 float c
__device__ float
static __inline unsigned char unsigned int unsigned int unsigned int * __p
Definition: adxintrin.h:24
static __inline__ vector bool char __ATTRS_o_ai vec_cmpeq(vector signed char __a, vector signed char __b)
Definition: altivec.h:1625
static __inline__ vector int __ATTRS_o_ai vec_vmrghw(vector int __a, vector int __b)
Definition: altivec.h:4769
static __inline__ vector signed char __ATTRS_o_ai vec_ld(int __a, const vector signed char *__b)
Definition: altivec.h:3504
#define vec_ctf(__a, __b)
Definition: altivec.h:2950
static __inline__ vector int __ATTRS_o_ai vec_vupkhsh(vector short __a)
Definition: altivec.h:11757
static __inline__ vector signed char __ATTRS_o_ai vec_splats(signed char __a)
Definition: altivec.h:13710
static __inline__ vector short __ATTRS_o_ai vec_vupkhsb(vector signed char __a)
Definition: altivec.h:11738
static __inline__ void __ATTRS_o_ai vec_st(vector signed char __a, int __b, vector signed char *__c)
Definition: altivec.h:10278
static __inline__ vector signed char __ATTRS_o_ai vec_andc(vector signed char __a, vector signed char __b)
Definition: altivec.h:1163
static __inline__ vector int __ATTRS_o_ai vec_sum4s(vector signed char __a, vector int __b)
Definition: altivec.h:11531
static __inline__ vector signed char __ATTRS_o_ai vec_and(vector signed char __a, vector signed char __b)
Definition: altivec.h:810
static __inline__ vector signed char __ATTRS_o_ai vec_avg(vector signed char __a, vector signed char __b)
Definition: altivec.h:1514
static __inline__ vector signed char __ATTRS_o_ai vec_mergel(vector signed char __a, vector signed char __b)
Definition: altivec.h:4804
static __inline__ vector int __ATTRS_o_ai vec_vmrglw(vector int __a, vector int __b)
Definition: altivec.h:5032
static __inline__ vector signed char __ATTRS_o_ai vec_perm(vector signed char __a, vector signed char __b, vector unsigned char __c)
Definition: altivec.h:7320
static __inline__ vector signed char __ATTRS_o_ai vec_sel(vector signed char __a, vector signed char __b, vector unsigned char __c)
Definition: altivec.h:7834
static __inline__ vector signed char __ATTRS_o_ai vec_mergeh(vector signed char __a, vector signed char __b)
Definition: altivec.h:4534
static __inline__ vector int __ATTRS_o_ai vec_vupklsh(vector short __a)
Definition: altivec.h:11896
static __inline__ vector bool char __ATTRS_o_ai vec_cmplt(vector signed char __a, vector signed char __b)
Definition: altivec.h:2196
static __inline__ vector signed char __ATTRS_o_ai vec_max(vector signed char __a, vector signed char __b)
Definition: altivec.h:4281
static __inline__ vector signed char __ATTRS_o_ai vec_nor(vector signed char __a, vector signed char __b)
Definition: altivec.h:6098
static __inline__ vector bool char __ATTRS_o_ai vec_cmpge(vector signed char __a, vector signed char __b)
Definition: altivec.h:2024
static __inline__ vector signed char __ATTRS_o_ai vec_pack(vector signed short __a, vector signed short __b)
Definition: altivec.h:6747
static __inline__ vector float __ATTRS_o_ai vec_re(vector float __a)
Definition: altivec.h:7621
static __inline__ vector signed char __ATTRS_o_ai vec_min(vector signed char __a, vector signed char __b)
Definition: altivec.h:5185
#define vec_cts
Definition: altivec.h:2981
static __inline__ vector signed char __ATTRS_o_ai vec_splat(vector signed char __a, unsigned const int __b)
Definition: altivec.h:9240
static __inline__ vector signed char __ATTRS_o_ai vec_or(vector signed char __a, vector signed char __b)
Definition: altivec.h:6234
static __inline__ vector signed char __ATTRS_o_ai vec_abs(vector signed char __a)
Definition: altivec.h:115
static __inline__ vector unsigned char __ATTRS_o_ai vec_xor(vector unsigned char __a, vector unsigned char __b)
Definition: altivec.h:12223
static __inline__ vector float __ATTRS_o_ai vec_rsqrte(vector float __a)
Definition: altivec.h:7809
static __inline__ vector bool char __ATTRS_o_ai vec_cmpgt(vector signed char __a, vector signed char __b)
Definition: altivec.h:1964
static __inline__ vector bool char __ATTRS_o_ai vec_cmple(vector signed char __a, vector signed char __b)
Definition: altivec.h:2140
static __inline__ vector signed char __ATTRS_o_ai vec_sub(vector signed char __a, vector signed char __b)
Definition: altivec.h:10963
static __inline__ void int __a
Definition: emmintrin.h:4185
void _mm_pause(void)
Indicates that a spin loop is being executed for the purposes of optimizing power consumption during ...
static __inline__ unsigned int unsigned char __D
Definition: ia32intrin.h:283
static __inline__ __m64 __DEFAULT_FN_ATTRS _mm_cmpeq_pi8(__m64 __m1, __m64 __m2)
Compares the 8-bit integer elements of two 64-bit integer vectors of [8 x i8] to determine if the ele...
Definition: mmintrin.h:1159
static __inline__ int __DEFAULT_FN_ATTRS _mm_comigt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the first ope...
Definition: xmmintrin.h:1089
static __inline__ int __DEFAULT_FN_ATTRS _mm_cvttss_si32(__m128 __a)
Converts a float value contained in the lower 32 bits of a vector of [4 x float] into a 32-bit intege...
Definition: xmmintrin.h:1393
#define _m_pinsrw
Definition: xmmintrin.h:2985
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rcp_ss(__m128 __a)
Calculates the approximate reciprocal of the value stored in the low-order bits of a 128-bit vector o...
Definition: xmmintrin.h:249
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmplt_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:545
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sqrt_ss(__m128 __a)
Calculates the square root of the value stored in the low-order bits of a 128-bit vector of [4 x floa...
Definition: xmmintrin.h:214
#define _MM_HINT_ET0
Definition: xmmintrin.h:2068
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_div_ps(__m128 __a, __m128 __b)
Divides two 128-bit vectors of [4 x float].
Definition: xmmintrin.h:196
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnge_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:880
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpeq_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] for equa...
Definition: xmmintrin.h:503
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_setzero_ps(void)
Constructs a 128-bit floating-point vector of [4 x float] initialized to zero.
Definition: xmmintrin.h:1903
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi32(__m128 __a)
Converts two low-order float values in a 128-bit vector of [4 x float] into a 64-bit vector of [2 x i...
Definition: xmmintrin.h:1358
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ss(float __w)
Constructs a 128-bit floating-point vector of [4 x float].
Definition: xmmintrin.h:1796
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_and_ps(__m128 __a, __m128 __b)
Performs a bitwise AND of two 128-bit vectors of [4 x float].
Definition: xmmintrin.h:404
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmplt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:526
static __inline__ int __DEFAULT_FN_ATTRS _mm_cvt_ss2si(__m128 __a)
Converts a float value contained in the lower 32 bits of a vector of [4 x float] into a 32-bit intege...
Definition: xmmintrin.h:1320
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpeq_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands for equality and returns the ...
Definition: xmmintrin.h:485
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_add_ps(__m128 __a, __m128 __b)
Adds two 128-bit vectors of [4 x float], and returns the results of the addition.
Definition: xmmintrin.h:70
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load_ps(const float *__p)
Loads a 128-bit floating-point vector of [4 x float] from an aligned memory location.
Definition: xmmintrin.h:1723
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_mulhi_pu16(__m64 __a, __m64 __b)
Multiplies packed 16-bit unsigned integer values and writes the high-order 16 bits of each 32-bit pro...
Definition: xmmintrin.h:2325
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpneq_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] for ineq...
Definition: xmmintrin.h:719
static __inline__ int __DEFAULT_FN_ATTRS _mm_comile_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the first ope...
Definition: xmmintrin.h:1065
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvt_ps2pi(__m128 __a)
Converts two low-order float values in a 128-bit vector of [4 x float] into a 64-bit vector of [2 x i...
Definition: xmmintrin.h:1374
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_andnot_ps(__m128 __a, __m128 __b)
Performs a bitwise AND of two 128-bit vectors of [4 x float], using the one's complement of the value...
Definition: xmmintrin.h:426
static __inline__ void __DEFAULT_FN_ATTRS _mm_storer_ps(float *__p, __m128 __a)
Stores float values from a 128-bit vector of [4 x float] to an aligned memory location in reverse ord...
Definition: xmmintrin.h:2062
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_undefined_ps(void)
Create a 128-bit vector of [4 x float] with undefined values.
Definition: xmmintrin.h:1776
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvttps_pi32(__m128 __a)
Converts two low-order float values in a 128-bit vector of [4 x float] into a 64-bit vector of [2 x i...
Definition: xmmintrin.h:1451
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnle_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:788
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomilt_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1185
#define _m_pmulhuw
Definition: xmmintrin.h:2991
#define _m_pmaxub
Definition: xmmintrin.h:2987
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmple_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:569
static __inline__ void __DEFAULT_FN_ATTRS _mm_stream_ps(float *__p, __m128 __a)
Moves packed float values from a 128-bit vector of [4 x float] to a 128-bit aligned memory location.
Definition: xmmintrin.h:2139
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvt_si2ss(__m128 __a, int __b)
Converts a 32-bit signed integer value into a floating point value and writes it to the lower 32 bits...
Definition: xmmintrin.h:1513
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi16_ps(__m64 __a)
Converts a 64-bit vector of [4 x i16] into a 128-bit vector of [4 x float].
Definition: xmmintrin.h:2729
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rsqrt_ps(__m128 __a)
Calculates the approximate reciprocals of the square roots of the values stored in a 128-bit vector o...
Definition: xmmintrin.h:302
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi8(__m128 __a)
Converts each single-precision floating-point element of a 128-bit floating-point vector of [4 x floa...
Definition: xmmintrin.h:2899
static __inline__ void __DEFAULT_FN_ATTRS _mm_storel_pi(__m64 *__p, __m128 __a)
Stores the lower 64 bits of a 128-bit vector of [4 x float] to a memory location.
Definition: xmmintrin.h:1941
#define _m_pmaxsw
Definition: xmmintrin.h:2986
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomile_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1210
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpge_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:677
#define _mm_shuffle_ps(a, b, mask)
Selects 4 float values from the 128-bit operands of [4 x float], as specified by the immediate value ...
Definition: xmmintrin.h:2603
#define _m_pavgw
Definition: xmmintrin.h:2995
static __inline__ int __DEFAULT_FN_ATTRS _mm_comieq_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands for equality and returns the ...
Definition: xmmintrin.h:1016
static __inline__ void __DEFAULT_FN_ATTRS _mm_store1_ps(float *__p, __m128 __a)
Stores the lower 32 bits of a 128-bit vector of [4 x float] into four contiguous elements in an align...
Definition: xmmintrin.h:2023
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpu16_ps(__m64 __a)
Converts a 64-bit vector of 16-bit unsigned integer values into a 128-bit vector of [4 x float].
Definition: xmmintrin.h:2759
void _mm_sfence(void)
Forces strong memory ordering (serialization) between store instructions preceding this instruction a...
#define _mm_load_ps1(p)
Definition: xmmintrin.h:1709
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ps1(float __w)
Constructs a 128-bit floating-point vector of [4 x float], with each of the four single-precision flo...
Definition: xmmintrin.h:1833
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_mul_ps(__m128 __a, __m128 __b)
Multiplies two 128-bit vectors of [4 x float] and returns the results of the multiplication.
Definition: xmmintrin.h:155
#define _MM_HINT_ET1
Definition: xmmintrin.h:2069
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_max_ps(__m128 __a, __m128 __b)
Compares two 128-bit vectors of [4 x float] and returns the greater of each pair of values.
Definition: xmmintrin.h:386
#define _m_pextrw
Definition: xmmintrin.h:2984
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rsqrt_ss(__m128 __a)
Calculates the approximate reciprocal of the square root of the value stored in the low-order bits of...
Definition: xmmintrin.h:285
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomige_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1260
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_avg_pu16(__m64 __a, __m64 __b)
Computes the rounded averages of the packed unsigned 16-bit integer values and writes the averages to...
Definition: xmmintrin.h:2426
static __inline__ int __DEFAULT_FN_ATTRS _mm_comilt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the first ope...
Definition: xmmintrin.h:1041
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadl_pi(__m128 __a, const __m64 *__p)
Loads two packed float values from the address __p into the low-order bits of a 128-bit vector of [4 ...
Definition: xmmintrin.h:1651
static __inline__ void __DEFAULT_FN_ATTRS _mm_storeu_ps(float *__p, __m128 __a)
Stores a 128-bit vector of [4 x float] to an unaligned memory location.
Definition: xmmintrin.h:1983
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sub_ss(__m128 __a, __m128 __b)
Subtracts the 32-bit float value in the low-order bits of the second operand from the corresponding v...
Definition: xmmintrin.h:92
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sub_ps(__m128 __a, __m128 __b)
Subtracts each of the values of the second operand from the first operand, both of which are 128-bit ...
Definition: xmmintrin.h:113
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load1_ps(const float *__p)
Loads a 32-bit float value and duplicates it to all four vector elements of a 128-bit vector of [4 x ...
Definition: xmmintrin.h:1700
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_movelh_ps(__m128 __a, __m128 __b)
Constructs a 128-bit floating-point vector of [4 x float].
Definition: xmmintrin.h:2711
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_min_ps(__m128 __a, __m128 __b)
Compares two 128-bit vectors of [4 x float] and returns the lesser of each pair of values.
Definition: xmmintrin.h:344
#define _m_pavgb
Definition: xmmintrin.h:2994
#define _m_pmovmskb
Definition: xmmintrin.h:2990
static __inline__ int __DEFAULT_FN_ATTRS _mm_comige_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the first ope...
Definition: xmmintrin.h:1113
static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtss_si32(__m128 __a)
Converts a float value contained in the lower 32 bits of a vector of [4 x float] into a 32-bit intege...
Definition: xmmintrin.h:1302
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpgt_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:632
#define _m_psadbw
Definition: xmmintrin.h:2996
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_setr_ps(float __z, float __y, float __x, float __w)
Constructs a 128-bit floating-point vector of [4 x float], initialized in reverse order with the spec...
Definition: xmmintrin.h:1888
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomigt_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1235
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_unpackhi_ps(__m128 __a, __m128 __b)
Unpacks the high-order (index 2,3) values from two 128-bit vectors of [4 x float] and interleaves the...
Definition: xmmintrin.h:2624
static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ss(float *__p, __m128 __a)
Stores the lower 32 bits of a 128-bit vector of [4 x float] to a memory location.
Definition: xmmintrin.h:1962
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpngt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:833
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadh_pi(__m128 __a, const __m64 *__p)
Loads two packed float values from the address __p into the high-order bits of a 128-bit vector of [4...
Definition: xmmintrin.h:1624
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_xor_ps(__m128 __a, __m128 __b)
Performs a bitwise exclusive OR of two 128-bit vectors of [4 x float].
Definition: xmmintrin.h:463
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_rcp_ps(__m128 __a)
Calculates the approximate reciprocals of the values stored in a 128-bit vector of [4 x float].
Definition: xmmintrin.h:266
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_move_ss(__m128 __a, __m128 __b)
Constructs a 128-bit floating-point vector of [4 x float].
Definition: xmmintrin.h:2668
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set1_ps(float __w)
Constructs a 128-bit floating-point vector of [4 x float], with each of the four single-precision flo...
Definition: xmmintrin.h:1814
static __inline__ void __DEFAULT_FN_ATTRS_MMX _mm_stream_pi(__m64 *__p, __m64 __a)
Stores a 64-bit integer in the specified aligned memory location.
Definition: xmmintrin.h:2120
static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ps(float *__p, __m128 __a)
Stores a 128-bit vector of [4 x float] into an aligned memory location.
Definition: xmmintrin.h:2004
#define _MM_HINT_T0
Definition: xmmintrin.h:2070
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_or_ps(__m128 __a, __m128 __b)
Performs a bitwise OR of two 128-bit vectors of [4 x float].
Definition: xmmintrin.h:444
#define _mm_extract_pi16(a, n)
Extracts 16-bit element from a 64-bit vector of [4 x i16] and returns it, as specified by the immedia...
Definition: xmmintrin.h:2183
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_sqrt_ps(__m128 __a)
Calculates the square roots of the values stored in a 128-bit vector of [4 x float].
Definition: xmmintrin.h:231
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpneq_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands for inequality and returns th...
Definition: xmmintrin.h:700
#define _mm_prefetch(a, sel)
Loads one cache line of data from the specified address to a location closer to the processor.
Definition: xmmintrin.h:2103
static __inline__ float __DEFAULT_FN_ATTRS _mm_cvtss_f32(__m128 __a)
Extracts a float value contained in the lower 32 bits of a vector of [4 x float].
Definition: xmmintrin.h:1603
#define _m_pminsw
Definition: xmmintrin.h:2988
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_max_pu8(__m64 __a, __m64 __b)
Compares each of the corresponding packed 8-bit unsigned integer values of the 64-bit integer vectors...
Definition: xmmintrin.h:2250
int __v4si __attribute__((__vector_size__(16)))
Definition: xmmintrin.h:15
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_mul_ss(__m128 __a, __m128 __b)
Multiplies two 32-bit float values in the low-order bits of the operands.
Definition: xmmintrin.h:135
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_min_pi16(__m64 __a, __m64 __b)
Compares each of the corresponding packed 16-bit integer values of the 64-bit integer vectors,...
Definition: xmmintrin.h:2269
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cvtsi32_ss(__m128 __a, int __b)
Converts a 32-bit signed integer value into a floating point value and writes it to the lower 32 bits...
Definition: xmmintrin.h:1490
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtt_ps2pi(__m128 __a)
Converts two low-order float values in a 128-bit vector of [4 x float] into a 64-bit vector of [2 x i...
Definition: xmmintrin.h:1468
static __inline__ int __DEFAULT_FN_ATTRS _mm_cvtt_ss2si(__m128 __a)
Converts a float value contained in the lower 32 bits of a vector of [4 x float] into a 32-bit intege...
Definition: xmmintrin.h:1412
static __inline__ int __DEFAULT_FN_ATTRS _mm_movemask_ps(__m128 __a)
Extracts the sign bits from each single-precision floating-point element of a 128-bit floating-point ...
Definition: xmmintrin.h:2924
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi32x2_ps(__m64 __a, __m64 __b)
Converts the two 32-bit signed integer values from each 64-bit vector operand of [2 x i32] into a 128...
Definition: xmmintrin.h:2840
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_movehl_ps(__m128 __a, __m128 __b)
Constructs a 128-bit floating-point vector of [4 x float].
Definition: xmmintrin.h:2690
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadr_ps(const float *__p)
Loads four packed float values, in reverse order, from an aligned memory location to 32-bit elements ...
Definition: xmmintrin.h:1762
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpord_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:927
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnlt_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:763
static __inline__ void __DEFAULT_FN_ATTRS _mm_storeh_pi(__m64 *__p, __m128 __a)
Stores the upper 64 bits of a 128-bit vector of [4 x float] to a memory location.
Definition: xmmintrin.h:1920
#define _MM_HINT_T1
Definition: xmmintrin.h:2071
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpngt_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:855
#define _m_pshufw
Definition: xmmintrin.h:2992
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnge_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:902
#define _m_maskmovq
Definition: xmmintrin.h:2993
#define _mm_insert_pi16(a, d, n)
Copies data from the 64-bit vector of [4 x i16] to the destination, and inserts the lower 16-bits of ...
Definition: xmmintrin.h:2214
#define _mm_shuffle_pi16(a, n)
Shuffles the 4 16-bit integers from a 64-bit integer vector to the destination, as specified by the i...
Definition: xmmintrin.h:2361
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpord_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:947
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpgt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:611
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvt_pi2ps(__m128 __a, __m64 __b)
Converts two elements of a 64-bit vector of [2 x i32] into two floating point values and writes them ...
Definition: xmmintrin.h:1586
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomieq_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1161
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_add_ss(__m128 __a, __m128 __b)
Adds the 32-bit float values in the low-order bits of the operands.
Definition: xmmintrin.h:50
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_set_ps(float __z, float __y, float __x, float __w)
Constructs a 128-bit floating-point vector of [4 x float] initialized with the specified single-preci...
Definition: xmmintrin.h:1860
static __inline__ int __DEFAULT_FN_ATTRS_MMX _mm_movemask_pi8(__m64 __a)
Takes the most significant bit from each 8-bit element in a 64-bit integer vector to create an 8-bit ...
Definition: xmmintrin.h:2306
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnlt_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:743
static __inline__ void __DEFAULT_FN_ATTRS _mm_store_ps1(float *__p, __m128 __a)
Stores the lower 32 bits of a 128-bit vector of [4 x float] into four contiguous elements in an align...
Definition: xmmintrin.h:2043
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_min_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands and returns the lesser value ...
Definition: xmmintrin.h:325
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpu8_ps(__m64 __a)
Converts the lower four unsigned 8-bit integer values from a 64-bit vector of [8 x u8] into a 128-bit...
Definition: xmmintrin.h:2813
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmple_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:588
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_avg_pu8(__m64 __a, __m64 __b)
Computes the rounded averages of the packed unsigned 8-bit integer values and writes the averages to ...
Definition: xmmintrin.h:2407
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi8_ps(__m64 __a)
Converts the lower four 8-bit values from a 64-bit vector of [8 x i8] into a 128-bit vector of [4 x f...
Definition: xmmintrin.h:2788
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_unpacklo_ps(__m128 __a, __m128 __b)
Unpacks the low-order (index 0,1) values from two 128-bit vectors of [4 x float] and interleaves them...
Definition: xmmintrin.h:2646
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_max_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands and returns the greater value...
Definition: xmmintrin.h:367
static __inline__ void __DEFAULT_FN_ATTRS_MMX _mm_maskmove_si64(__m64 __d, __m64 __n, char *__p)
Conditionally copies the values from each 8-bit element in the first 64-bit integer vector operand to...
Definition: xmmintrin.h:2388
#define _m_pminub
Definition: xmmintrin.h:2989
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_max_pi16(__m64 __a, __m64 __b)
Compares each of the corresponding packed 16-bit integer values of the 64-bit integer vectors,...
Definition: xmmintrin.h:2231
static __inline__ int __DEFAULT_FN_ATTRS _mm_ucomineq_ss(__m128 __a, __m128 __b)
Performs an unordered comparison of two 32-bit float values using the low-order bits of both operands...
Definition: xmmintrin.h:1284
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_cvtps_pi16(__m128 __a)
Converts each single-precision floating-point element of a 128-bit floating-point vector of [4 x floa...
Definition: xmmintrin.h:2869
#define _MM_HINT_NTA
Definition: xmmintrin.h:2073
static __inline__ int __DEFAULT_FN_ATTRS _mm_comineq_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the first ope...
Definition: xmmintrin.h:1137
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_min_pu8(__m64 __a, __m64 __b)
Compares each of the corresponding packed 8-bit unsigned integer values of the 64-bit integer vectors...
Definition: xmmintrin.h:2288
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpnle_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:808
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX _mm_sad_pu8(__m64 __a, __m64 __b)
Subtracts the corresponding 8-bit unsigned integer values of the two 64-bit vector operands and compu...
Definition: xmmintrin.h:2448
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX _mm_cvtpi32_ps(__m128 __a, __m64 __b)
Converts two elements of a 64-bit vector of [2 x i32] into two floating point values and writes them ...
Definition: xmmintrin.h:1563
#define _MM_HINT_T2
Definition: xmmintrin.h:2072
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpunord_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:972
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpge_ss(__m128 __a, __m128 __b)
Compares two 32-bit float values in the low-order bits of both operands to determine if the value in ...
Definition: xmmintrin.h:656
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_cmpunord_ps(__m128 __a, __m128 __b)
Compares each of the corresponding 32-bit float values of the 128-bit vectors of [4 x float] to deter...
Definition: xmmintrin.h:992
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_loadu_ps(const float *__p)
Loads a 128-bit floating-point vector of [4 x float] from an unaligned memory location.
Definition: xmmintrin.h:1740
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_load_ss(const float *__p)
Constructs a 128-bit floating-point vector of [4 x float].
Definition: xmmintrin.h:1678
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_div_ss(__m128 __a, __m128 __b)
Divides the value in the low-order 32 bits of the first operand by the corresponding value in the sec...
Definition: xmmintrin.h:177