ETISS 0.8.0
Extendable Translating Instruction Set Simulator (version 0.8.0)
__clang_cuda_cmath.h
Go to the documentation of this file.
1 /*===---- __clang_cuda_cmath.h - Device-side CUDA cmath support ------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 #ifndef __CLANG_CUDA_CMATH_H__
10 #define __CLANG_CUDA_CMATH_H__
11 #ifndef __CUDA__
12 #error "This file is for CUDA compilation only."
13 #endif
14 
15 #ifndef __OPENMP_NVPTX__
16 #include <limits>
17 #endif
18 
19 // CUDA lets us use various std math functions on the device side. This file
20 // works in concert with __clang_cuda_math_forward_declares.h to make this work.
21 //
22 // Specifically, the forward-declares header declares __device__ overloads for
23 // these functions in the global namespace, then pulls them into namespace std
24 // with 'using' statements. Then this file implements those functions, after
25 // their implementations have been pulled in.
26 //
27 // It's important that we declare the functions in the global namespace and pull
28 // them into namespace std with using statements, as opposed to simply declaring
29 // these functions in namespace std, because our device functions need to
30 // overload the standard library functions, which may be declared in the global
31 // namespace or in std, depending on the degree of conformance of the stdlib
32 // implementation. Declaring in the global namespace and pulling into namespace
33 // std covers all of the known knowns.
34 
35 #ifdef __OPENMP_NVPTX__
36 #define __DEVICE__ static constexpr __attribute__((always_inline, nothrow))
37 #else
38 #define __DEVICE__ static __device__ __inline__ __attribute__((always_inline))
39 #endif
40 
41 __DEVICE__ long long abs(long long __n) { return ::llabs(__n); }
42 __DEVICE__ long abs(long __n) { return ::labs(__n); }
43 __DEVICE__ float abs(float __x) { return ::fabsf(__x); }
44 __DEVICE__ double abs(double __x) { return ::fabs(__x); }
45 __DEVICE__ float acos(float __x) { return ::acosf(__x); }
46 __DEVICE__ float asin(float __x) { return ::asinf(__x); }
47 __DEVICE__ float atan(float __x) { return ::atanf(__x); }
48 __DEVICE__ float atan2(float __x, float __y) { return ::atan2f(__x, __y); }
49 __DEVICE__ float ceil(float __x) { return ::ceilf(__x); }
50 __DEVICE__ float cos(float __x) { return ::cosf(__x); }
51 __DEVICE__ float cosh(float __x) { return ::coshf(__x); }
52 __DEVICE__ float exp(float __x) { return ::expf(__x); }
53 __DEVICE__ float fabs(float __x) { return ::fabsf(__x); }
55 __DEVICE__ float fmod(float __x, float __y) { return ::fmodf(__x, __y); }
57  return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
58  FP_ZERO, __x);
59 }
60 __DEVICE__ int fpclassify(double __x) {
61  return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
62  FP_ZERO, __x);
63 }
64 __DEVICE__ float frexp(float __arg, int *__exp) {
65  return ::frexpf(__arg, __exp);
66 }
67 
68 // For inscrutable reasons, the CUDA headers define these functions for us on
69 // Windows. For OpenMP we omit these as some old system headers have
70 // non-conforming `isinf(float)` and `isnan(float)` implementations that return
71 // an `int`. The system versions of these functions should be fine anyway.
72 #if !defined(_MSC_VER) && !defined(__OPENMP_NVPTX__)
76 // For inscrutable reasons, __finite(), the double-precision version of
77 // __finitef, does not exist when compiling for MacOS. __isfinited is available
78 // everywhere and is just as good.
82 #endif
83 
84 __DEVICE__ bool isgreater(float __x, float __y) {
85  return __builtin_isgreater(__x, __y);
86 }
87 __DEVICE__ bool isgreater(double __x, double __y) {
88  return __builtin_isgreater(__x, __y);
89 }
90 __DEVICE__ bool isgreaterequal(float __x, float __y) {
91  return __builtin_isgreaterequal(__x, __y);
92 }
93 __DEVICE__ bool isgreaterequal(double __x, double __y) {
94  return __builtin_isgreaterequal(__x, __y);
95 }
96 __DEVICE__ bool isless(float __x, float __y) {
97  return __builtin_isless(__x, __y);
98 }
99 __DEVICE__ bool isless(double __x, double __y) {
100  return __builtin_isless(__x, __y);
101 }
102 __DEVICE__ bool islessequal(float __x, float __y) {
103  return __builtin_islessequal(__x, __y);
104 }
105 __DEVICE__ bool islessequal(double __x, double __y) {
106  return __builtin_islessequal(__x, __y);
107 }
108 __DEVICE__ bool islessgreater(float __x, float __y) {
109  return __builtin_islessgreater(__x, __y);
110 }
111 __DEVICE__ bool islessgreater(double __x, double __y) {
112  return __builtin_islessgreater(__x, __y);
113 }
114 __DEVICE__ bool isnormal(float __x) { return __builtin_isnormal(__x); }
115 __DEVICE__ bool isnormal(double __x) { return __builtin_isnormal(__x); }
116 __DEVICE__ bool isunordered(float __x, float __y) {
117  return __builtin_isunordered(__x, __y);
118 }
119 __DEVICE__ bool isunordered(double __x, double __y) {
120  return __builtin_isunordered(__x, __y);
121 }
122 __DEVICE__ float ldexp(float __arg, int __exp) {
123  return ::ldexpf(__arg, __exp);
124 }
125 __DEVICE__ float log(float __x) { return ::logf(__x); }
127 __DEVICE__ float modf(float __x, float *__iptr) { return ::modff(__x, __iptr); }
128 __DEVICE__ float pow(float __base, float __exp) {
129  return ::powf(__base, __exp);
130 }
131 __DEVICE__ float pow(float __base, int __iexp) {
132  return ::powif(__base, __iexp);
133 }
134 __DEVICE__ double pow(double __base, int __iexp) {
135  return ::powi(__base, __iexp);
136 }
139 __DEVICE__ float sin(float __x) { return ::sinf(__x); }
142 __DEVICE__ float tan(float __x) { return ::tanf(__x); }
144 
145 // Notably missing above is nexttoward. We omit it because
146 // libdevice doesn't provide an implementation, and we don't want to be in the
147 // business of implementing tricky libm functions in this header.
148 
149 #ifndef __OPENMP_NVPTX__
150 
151 // Now we've defined everything we promised we'd define in
152 // __clang_cuda_math_forward_declares.h. We need to do two additional things to
153 // fix up our math functions.
154 //
155 // 1) Define __device__ overloads for e.g. sin(int). The CUDA headers define
156 // only sin(float) and sin(double), which means that e.g. sin(0) is
157 // ambiguous.
158 //
159 // 2) Pull the __device__ overloads of "foobarf" math functions into namespace
160 // std. These are defined in the CUDA headers in the global namespace,
161 // independent of everything else we've done here.
162 
163 // We can't use std::enable_if, because we want to be pre-C++11 compatible. But
164 // we go ahead and unconditionally define functions that are only available when
165 // compiling for C++11 to match the behavior of the CUDA headers.
166 template<bool __B, class __T = void>
168 
169 template <class __T> struct __clang_cuda_enable_if<true, __T> {
170  typedef __T type;
171 };
172 
173 // Defines an overload of __fn that accepts one integral argument, calls
174 // __fn((double)x), and returns __retty.
175 #define __CUDA_CLANG_FN_INTEGER_OVERLOAD_1(__retty, __fn) \
176  template <typename __T> \
177  __DEVICE__ \
178  typename __clang_cuda_enable_if<std::numeric_limits<__T>::is_integer, \
179  __retty>::type \
180  __fn(__T __x) { \
181  return ::__fn((double)__x); \
182  }
183 
184 // Defines an overload of __fn that accepts one two arithmetic arguments, calls
185 // __fn((double)x, (double)y), and returns a double.
186 //
187 // Note this is different from OVERLOAD_1, which generates an overload that
188 // accepts only *integral* arguments.
189 #define __CUDA_CLANG_FN_INTEGER_OVERLOAD_2(__retty, __fn) \
190  template <typename __T1, typename __T2> \
191  __DEVICE__ typename __clang_cuda_enable_if< \
192  std::numeric_limits<__T1>::is_specialized && \
193  std::numeric_limits<__T2>::is_specialized, \
194  __retty>::type \
195  __fn(__T1 __x, __T2 __y) { \
196  return __fn((double)__x, (double)__y); \
197  }
198 
259 
260 #undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_1
261 #undef __CUDA_CLANG_FN_INTEGER_OVERLOAD_2
262 
263 // Overloads for functions that don't match the patterns expected by
264 // __CUDA_CLANG_FN_INTEGER_OVERLOAD_{1,2}.
265 template <typename __T1, typename __T2, typename __T3>
267  std::numeric_limits<__T1>::is_specialized &&
268  std::numeric_limits<__T2>::is_specialized &&
269  std::numeric_limits<__T3>::is_specialized,
270  double>::type
271 fma(__T1 __x, __T2 __y, __T3 __z) {
272  return std::fma((double)__x, (double)__y, (double)__z);
273 }
274 
275 template <typename __T>
277  double>::type
278 frexp(__T __x, int *__exp) {
279  return std::frexp((double)__x, __exp);
280 }
281 
282 template <typename __T>
284  double>::type
285 ldexp(__T __x, int __exp) {
286  return std::ldexp((double)__x, __exp);
287 }
288 
289 template <typename __T1, typename __T2>
291  std::numeric_limits<__T1>::is_specialized &&
292  std::numeric_limits<__T2>::is_specialized,
293  double>::type
294 remquo(__T1 __x, __T2 __y, int *__quo) {
295  return std::remquo((double)__x, (double)__y, __quo);
296 }
297 
298 template <typename __T>
300  double>::type
301 scalbln(__T __x, long __exp) {
302  return std::scalbln((double)__x, __exp);
303 }
304 
305 template <typename __T>
307  double>::type
308 scalbn(__T __x, int __exp) {
309  return std::scalbn((double)__x, __exp);
310 }
311 
312 // We need to define these overloads in exactly the namespace our standard
313 // library uses (including the right inline namespace), otherwise they won't be
314 // picked up by other functions in the standard library (e.g. functions in
315 // <complex>). Thus the ugliness below.
316 #ifdef _LIBCPP_BEGIN_NAMESPACE_STD
317 _LIBCPP_BEGIN_NAMESPACE_STD
318 #else
319 namespace std {
320 #ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
321 _GLIBCXX_BEGIN_NAMESPACE_VERSION
322 #endif
323 #endif
324 
325 // Pull the new overloads we defined above into namespace std.
390 
391 // Well this is fun: We need to pull these symbols in for libc++, but we can't
392 // pull them in with libstdc++, because its ::isinf and ::isnan are different
393 // than its std::isinf and std::isnan.
394 #ifndef __GLIBCXX__
397 #endif
398 
399 // Finally, pull the "foobarf" functions that CUDA defines in its headers into
400 // namespace std.
456 
457 #ifdef _LIBCPP_END_NAMESPACE_STD
458 _LIBCPP_END_NAMESPACE_STD
459 #else
460 #ifdef _GLIBCXX_BEGIN_NAMESPACE_VERSION
461 _GLIBCXX_END_NAMESPACE_VERSION
462 #endif
463 } // namespace std
464 #endif
465 
466 #endif // __OPENMP_NVPTX__
467 
468 #undef __DEVICE__
469 
470 #endif
__DEVICE__ float sinh(float __x)
Compute hyperbolic sine.
__DEVICE__ __clang_cuda_enable_if< std::numeric_limits< __T1 >::is_specialized &&std::numeric_limits< __T2 >::is_specialized &&std::numeric_limits< __T3 >::is_specialized, double >::type fma(__T1 __x, __T2 __y, __T3 __z)
__DEVICE__ __clang_cuda_enable_if< std::numeric_limits< __T1 >::is_specialized &&std::numeric_limits< __T2 >::is_specialized, double >::type remquo(__T1 __x, __T2 __y, int *__quo)
__DEVICE__ float log10(float __x)
Compute a base 10 logarithm.
__DEVICE__ bool isunordered(float __x, float __y)
Test if arguments are unordered.
__DEVICE__ __clang_cuda_enable_if< std::numeric_limits< __T >::is_integer, double >::type scalbln(__T __x, long __exp)
__DEVICE__ bool isgreater(float __x, float __y)
Returns the component-wise compare of x > y.
__DEVICE__ float tanh(float __x)
Compute hyperbolic tangent.
__DEVICE__ bool islessgreater(float __x, float __y)
Returns the component-wise compare of (x < y) || (x > y) .
__DEVICE__ bool isnan(float __x)
Test for a NaN.
__DEVICE__ int fpclassify(float __x)
__DEVICE__ float sin(float __x)
Compute sine.
__DEVICE__ __clang_cuda_enable_if< std::numeric_limits< __T >::is_integer, double >::type scalbn(__T __x, int __exp)
__DEVICE__ bool isfinite(float __x)
Test for finite value.
__DEVICE__ float cos(float __x)
Compute cosine.
__DEVICE__ float floor(float __x)
Round to integral value using the round to -ve infinity rounding mode.
__DEVICE__ bool signbit(float __x)
Test for sign bit.
__DEVICE__ bool isinf(float __x)
Test for infinity value (+ve or -ve) .
__DEVICE__ float asin(float __x)
Arc sine function.
__DEVICE__ float fmod(float __x, float __y)
Modulus.
#define __DEVICE__
__DEVICE__ float acos(float __x)
Arc cosine function.
__DEVICE__ float pow(float __base, float __exp)
Compute x to the power y.
__DEVICE__ float ceil(float __x)
Round to integral value using the round to positive infinity rounding mode.
__DEVICE__ float tan(float __x)
Compute tangent.
__DEVICE__ float sqrt(float __x)
Compute square root.
__DEVICE__ float log(float __x)
Compute natural logarithm.
__DEVICE__ float modf(float __x, float *__iptr)
Decompose a floating-point number.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_1(__retty, __fn)
__DEVICE__ bool islessequal(float __x, float __y)
Returns the component-wise compare of x <= y.
__DEVICE__ float frexp(float __arg, int *__exp)
Extract mantissa and exponent from x.
#define __CUDA_CLANG_FN_INTEGER_OVERLOAD_2(__retty, __fn)
__DEVICE__ float exp(float __x)
Compute the base e exponential function of x.
__DEVICE__ long long abs(long long __n)
__DEVICE__ bool isless(float __x, float __y)
Returns the component-wise compare of x < y.
__DEVICE__ float fabs(float __x)
Compute absolute value of a floating-point number.
__DEVICE__ bool isnormal(float __x)
Test for a normal value.
__DEVICE__ float atan2(float __x, float __y)
Arc tangent of y / x.
__DEVICE__ float atan(float __x)
Arc tangent function.
__DEVICE__ float cosh(float __x)
Compute hyperbolic cosine.
__DEVICE__ float ldexp(float __arg, int __exp)
Multiply x by 2 to the power n.
__DEVICE__ bool isgreaterequal(float __x, float __y)
Returns the component-wise compare of x >= y.
__DEVICE__ int __isinff(float __a)
__DEVICE__ int __isnan(double __a)
__DEVICE__ int __isinf(double __a)
__DEVICE__ int __signbitf(float __a)
__DEVICE__ int __finitef(float __a)
__DEVICE__ int __signbitd(double __a)
__DEVICE__ int __isnanf(float __a)
__DEVICE__ int __isfinited(double __a)
__DEVICE__ double powi(double __a, int __b)
__DEVICE__ float fabsf(float __a)
__DEVICE__ float fmodf(float __a, float __b)
__DEVICE__ float remainderf(float __a, float __b)
__DEVICE__ float exp2f(float __a)
__DEVICE__ float acosf(float __a)
__DEVICE__ float fmaf(float __a, float __b, float __c)
__DEVICE__ float cbrtf(float __a)
__DEVICE__ float remquof(float __a, float __b, int *__c)
__DEVICE__ float tanf(float __a)
__DEVICE__ long labs(long __a)
__DEVICE__ float nextafterf(float __a, float __b)
__DEVICE__ float fmaxf(float __a, float __b)
__DEVICE__ long long llabs(long long __a)
__DEVICE__ float fminf(float __a, float __b)
__DEVICE__ float log2f(float __a)
__DEVICE__ float copysignf(float __a, float __b)
__DEVICE__ float truncf(float __a)
__DEVICE__ float fdimf(float __a, float __b)
__DEVICE__ long lrintf(float __a)
__DEVICE__ long long llrintf(float __a)
__DEVICE__ float cosf(float __a)
__DEVICE__ float sinf(float __a)
__DEVICE__ float logf(float __a)
__DEVICE__ float erff(float __a)
__DEVICE__ float floorf(float __f)
__DEVICE__ float ceilf(float __a)
__DEVICE__ float nearbyintf(float __a)
__DEVICE__ float atanf(float __a)
__DEVICE__ float atanhf(float __a)
__DEVICE__ float tanhf(float __a)
__DEVICE__ float rintf(float __a)
__DEVICE__ float atan2f(float __a, float __b)
__DEVICE__ float sinhf(float __a)
__DEVICE__ float acoshf(float __a)
__DEVICE__ float log10f(float __a)
__DEVICE__ float ldexpf(float __a, int __b)
__DEVICE__ float modff(float __a, float *__b)
__DEVICE__ float logbf(float __a)
__DEVICE__ float powif(float __a, int __b)
__DEVICE__ float coshf(float __a)
__DEVICE__ float asinhf(float __a)
__DEVICE__ float roundf(float __a)
__DEVICE__ long lroundf(float __a)
__DEVICE__ float scalbnf(float __a, int __b)
__DEVICE__ float erfcf(float __a)
__DEVICE__ int ilogbf(float __a)
__DEVICE__ float powf(float __a, float __b)
__DEVICE__ float frexpf(float __a, int *__b)
__DEVICE__ float sqrtf(float __a)
__DEVICE__ float expf(float __a)
__DEVICE__ float expm1f(float __a)
__DEVICE__ float scalblnf(float __a, long __b)
__DEVICE__ float tgammaf(float __a)
__DEVICE__ float log1pf(float __a)
__DEVICE__ float lgammaf(float __a)
__DEVICE__ long long llroundf(float __a)
__DEVICE__ float hypotf(float __a, float __b)
__DEVICE__ float asinf(float __a)
static __inline unsigned char unsigned int __x
Definition: adxintrin.h:22
static __inline unsigned char unsigned int unsigned int __y
Definition: adxintrin.h:22
#define true
Definition: stdbool.h:16
#define fmin(__x, __y)
Definition: tgmath.h:780
#define ilogb(__x)
Definition: tgmath.h:851
#define copysign(__x, __y)
Definition: tgmath.h:618
#define erf(__x)
Definition: tgmath.h:636
#define atanh(__x)
Definition: tgmath.h:228
#define nextafter(__x, __y)
Definition: tgmath.h:1055
#define asinh(__x)
Definition: tgmath.h:199
#define erfc(__x)
Definition: tgmath.h:653
#define hypot(__x, __y)
Definition: tgmath.h:833
#define exp2(__x)
Definition: tgmath.h:670
#define cbrt(__x)
Definition: tgmath.h:584
#define log2(__x)
Definition: tgmath.h:970
#define llround(__x)
Definition: tgmath.h:919
#define trunc(__x)
Definition: tgmath.h:1216
#define fmax(__x, __y)
Definition: tgmath.h:762
#define acosh(__x)
Definition: tgmath.h:170
#define tgamma(__x)
Definition: tgmath.h:1199
#define round(__x)
Definition: tgmath.h:1148
#define llrint(__x)
Definition: tgmath.h:902
#define log1p(__x)
Definition: tgmath.h:953
#define rint(__x)
Definition: tgmath.h:1131
#define expm1(__x)
Definition: tgmath.h:687
#define remainder(__x, __y)
Definition: tgmath.h:1090
#define fdim(__x, __y)
Definition: tgmath.h:704
#define lgamma(__x)
Definition: tgmath.h:885
#define lrint(__x)
Definition: tgmath.h:1004
#define logb(__x)
Definition: tgmath.h:987
#define nearbyint(__x)
Definition: tgmath.h:1038
#define lround(__x)
Definition: tgmath.h:1021